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ABSTRACT 
 

 Stormwater management is required due to development and alteration of the natural 

environment.  It is heavily regulated in Florida and at the national level.  Over the last two 

decades, Low Impact Development (LID) has been promoted as a sustainable and 

environmentally friendly method of controlling urban runoff.  Case studies, provided in Chapter 

2, show that LIDs can restore watershed hydrology by balancing the water budget.  The 

difference in runoff between pre-development and post-development appears to increase with 

soil perviousness.  However, the potential for mitigating the impacts of urbanization through 

runoff reduction is also greater for pervious, sandy soils that dominate central and south Florida.  

A greater potential for urbanization mitigation in Florida’s highly pervious soils initiates more 

research in quantifying the benefits of LID.  Southwest Florida is currently in its infancy when 

adopting LID on a broad-scale; however, several municipalities are in the process of 

incorporating LID into their stormwater management programs. 

 Low Impact Development includes non-structural practices such as minimal site 

disturbance and maintenance of natural flow patterns as well as structural practices.  There are 

numerous structural LID practices such as rain barrels, bioretention systems, infiltration trenches, 

green roofs, and pervious pavement.  Structural LIDs can be divided into comparison categories 

such as low capital cost and high capital cost as well as rainwater harvesting and infiltration-

based.  Low capital cost options include rain gardens, which can range from $4.00 to $10.00 per 

cubic foot of runoff volume whereas high capital cost options include pervious pavements and 
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green roofs, which can range from $120.00 and $225.00 - $360.00 per cubic foot of runoff 

volume, respectively.  Given the order of magnitude difference in cost between the low capital 

cost and the high capital cost LIDs, the focus of this thesis will be on those practices which 

require a low initial capital investment.  Additionally, the low-cost options are further divided 

into two categories, rainwater harvesting LIDs and infiltration-based LIDs. 

Rainwater harvesting (RWH) is a LID practice that attenuates peak flow during wet 

weather events and reduces potable water demand for uses that would not normally require water 

of potable quality.  The two options for RWH are rain barrels and cisterns.  The difference 

between the two is a matter of scale.  Rain barrels are typically implemented in one or more 

barrels with a volume of approximately 55-gallons, where as cistern volumes start at the 

hundreds of gallons.  Effective RWH design includes long-term supply and demand as well as 

physical site considerations.  Southwest Florida’s climate pattern is not compatible with rain 

barrels for runoff reduction due to their small volume; however, they still offer modest potable 

water savings to homeowners.  Given the type, duration, and frequency of storm events, cisterns 

can offer runoff reduction as well as reducing potable water demand.  For example, in Tampa, 

Florida, to achieve approximately 70% catchment efficiency, an average sized home would need 

approximately fourteen 55-gallon rain barrels or a 750-gallon cistern.  Conversely, for a single 

50-gallon rain barrel that serves outdoor use only, the water-saving efficiency is about 10% for 

Tampa. 

When properly designed, infiltration-based LIDs mitigate groundwater disruptions that 

result from urbanization such as minimizing receiving water body hydromodifications, such as 

stream bank erosion, and reducing pollutant discharges to surface waters.  Infiltration-based 

LIDs include systems such as bioretention, level spreaders, drywells, and “pocket” practices i.e. 
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pocket wetlands.  Infiltration-based LIDs may be wet or dry systems and rely on easily attainable 

construction materials such as gravel, sand, and native vegetation.  This combination may have 

applicability in Florida due to flat slopes, sandy soils, and areas with occasionally high seasonal 

water table.  National standards for LID design should be considered guidelines and adapted 

accordingly to regional conditions in Southwest Florida.  It is possible to utilize any number of 

LIDs, though one of the key factors to success is proper knowledge of the seasonally high water 

table, especially along the coast line.  Additional factors to ensure infiltration-based LID success 

include installing a pre-treatment filter strip, standardized infiltration rate testing, standardized 

materials specifications, proper sequence of construction, and diligent construction inspections 

during and following construction.     

The prospect of increased LID implementation within Southwest Florida appears 

promising.  Municipalities are actively incorporating LID into their stormwater management 

recommendations.  A behavioral study and interviews with staff from local governments 

regarding LID was conducted.  The results indicate that Southwest Florida is facing many of the 

same barriers to implementation as other communities across the nation.  These include lack of 

knowledge and education, lack of regionally specific design guidelines, and few “real world” 

pilot projects.  Based on the behavioral study, it appears education could be the strongest key to 

LID acceptance.  Over the course of three months in a graduate level urban hydrology course, 

opinions regarding LID in Southwest Florida went from not possible to positively inquiring how 

to increase implementation.  Since the region faces most of the same barriers to implementation, 

it may be possible to use other cities’ methods to increase LID acceptance and implementation as 

a template while modifying them so they are regionally appropriate.  A mnemonic device 

entitled “Let’s Make LIDs RADD” was created to assist engineers in implementing successful 
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LIDs.  Where “R” represents site reconnaissance, “A” stands for choosing the appropriate LID 

given the site conditions, the first “D” denotes conducting a drainage investigation, and the 

second “D” corresponds with finalizing the LID design based on the information gathered after 

conducting all previous acronym activities.   
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CHAPTER 1:  INTRODUCTION 
 
 Protection of natural amenities is vital to the economy of Florida.  Many tourists escape 

from the chilling, northern winters and visit Southwest Florida to enjoy the natural beauty of its 

lakes, springs, estuaries, parks, and beaches while spending billions of dollars annually (FWC, 

2014).  Southwest Florida’s parks and conservation lands provide valuable ecosystem services 

including food, fiber, flood control, drought protection, water quality, recreational, spiritual, and 

religious benefits (LMUAC, 2014) (Shi & Brown, 2014).  Additionally, the area is under 

extreme residential and commercial development pressure.  These activities cause environmental 

stressors such as increased imperviousness and surface runoff, decreased groundwater recharge, 

greater sediment and nutrient loading associated with stormwater runoff, and heightened 

groundwater withdrawal.  This combination of environmental stressors negatively affects the 

very places that drew tourists and new homeowners to the area in the first place.  A major 

environmental consequence from development and tourism is that many of Florida’s water 

features do not meet national guidelines for acceptable water quality and are subject to Total 

Maximum Daily Load (TMDL) requirements.  Total Maximum Daily Loads are a pollution 

budget that has been developed to restore impaired waters.  For the State of Florida, in general, 

the leading causes of water body impairments include mercury, oxygen depletion, pathogens, 

algal growth, and nutrients (EPAd, 2015).  

   Low Impact Development (LID) is a stormwater management approach that has the 

potential to mitigate many negative impacts associated with urbanization, such as replenishing 

groundwater via recharge, utilizing harvested rainwater for non-potable water uses, and 
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providing a level of pollution remediation.  Given the amount of money spent in Florida on 

recreation, an argument for LID implementation can also be made based on economics and 

environmental services, as LID and/or Green Infrastructure (GI) can increase property values; 

therefore, creating an inticing financial incentive for developers (EPAf, 2014).    

 Low Impact Development is defined as stormwater management practices that mimic the 

pre-development site hydrology by utilizing site design practices that store, infiltrate, evaporate, 

and detain runoff (PG County, MD, 1999).  The EPA (2014) defines LID as an approach to land 

development, or re-development, that works in conjunction with nature to manage stormwater as 

close to its source as possible.  Low Impact Development extends beyond a structural system and 

employs principles such as preserving and recreating natural landscape features, minimizing 

effective imperviousness to create functional, appealing site drainage that treats stormwater as a 

resource rather than a nuisance.  By implementing LID principles and structural practices, 

stormwater can be managed in a way that reduces the impact of urbanization and promotes the 

natural water movement within an ecosystem or watershed.  In addition, LID has been 

characterized as a sustainable stormwater practice by the Water Environment Research 

Foundation (EPAf, 2014). 

 Often, the terms Low Impact Development (LID) and Green Infrastructure (GI) are used 

interchangeably.  The distinction is subtle and a matter of scale.  Green Infrastructure utilizes 

LID as a means of stormwater management to achieve a much larger, regional planning goal.  

The EPA’s Office of Water (2011) has defined GI as a comprehensive planning approach toward 

sustainability.  Green Infrastructure provides green spaces, recreational opportunities, enhanced 

ecosystem services, improved air quality, increased property values, energy savings, economic 

development, reduced urban heat island effects, and job creation opportunities.  Green 
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Infrastructure benefits are enhanced in urban and suburban areas where green space is limited 

and environmental degradation may be more extensive (Stoner & Giles, 2011). 

 Skepticism to large-scale LID implementation has occurred in Southwest Florida despite 

potential benefits and organizations promoting its use (Coffman, 2002).  Although there are a 

number of real and perceived barriers to LID implementation, both the EPA and the University 

of Florida have created a series of fact sheets to provide LID education.  For example, in a study 

by Horner et al. (2007) a conventional stormwater design was compared to implementing LID 

throughout a Pasco County project site.  The LID design reduced costs, increased infiltration, 

and provided an overall balanced water budget for the site.  However, the authors noted that LID 

permitting approval would require additional documentation, which could be a deterrent for 

some consultants.  The authors also reported that maintenance costs for LID systems are slightly 

higher and, for extremely large storm events, LID would not provide the level of flood protection 

that would be provided by conventional stormwater systems (Horner, et al., 2007). 

  Low Impact Development practices can be non-structural or structural in nature.  Non-

structural LIDs include reduced site disturbance, street sweeping, and pet waste ordinances.  

Structural LIDs include infiltration-based designs, such as rain gardens, infiltration trenches, and 

green roofs, as well as rainwater harvesting systems, such as rain barrels and cisterns.  In 

Southwest Florida, some of the most common LID practices that have been actively promoted 

include rain gardens, pervious pavement, green roofs, and rain barrels.  However, a number of 

these technologies may not be as appropriate to the region as others.  For example, green roofs 

require an irrigation system due to inconsistent rainfall patterns during winter months, pervious 

pavement requires increased long-term maintenance due to sandy soils, and homeowner rain 



4 

barrels overflow in summer months due to frequent, intense precipitation.  These maintenance 

issues contribute to the skepticism regarding LID implementation.   

 The cost of LID installation is an identified barrier to implementation.  For example, 

green roofs and pervious pavement require a substantial initial capital cost increase over options 

such as rain gardens, which can range in initial cost from $4.00 - $10.00 per cubic foot of runoff 

volume (CWPa, 2007).  According to the Center for Watershed Protection (2007), pervious 

pavement and green roofs, can range from $120.00 and $225.00 - $360.00 per cubic foot of 

runoff volume, respectively.  Taking into account the order of magnitude difference in cost 

between the low capital cost and the high capital cost LIDs, this thesis will focus Chapters 3 and 

4 on those practices that require minimal initial capital investment. 

 Numerous studies have found a positive correlation between green or natural 

environments and citizen’s perceived overall general health, mental health, physical health, 

social health, and longevity (Godfrey, 2013).  Additional studies indicate a strong, positive 

relationship between the experience of natural environments and mental health.  Exposure to the 

natural environment promotes enhanced mood, improved attention, and reduced stress and 

anxiety.  These relationships appear to be stronger among underserved populations in urban 

settings.  In Chicago, those in deprived social housing communities have consistently responded 

positively to the benefit of space in areas such as cognitive restoration, self discipline, reduced 

aggression, and reduced crime (Thompson, et al., 2012).  Municipal planners and the 

development community could positively impact neighborhoods when LID/GI use is increased 

during redevelopment or community revitalization projects (Godfrey, 2013) (Thompson, et al., 

2012). 
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 The overarching research question of this thesis is: Why isn’t LID implementation more 

widespread throughout Florida, more specifically in Southwest Florida?  To answer this 

question, research objectives were developed to guide this thesis.  The research topics and 

objectives for each chapter are as follows: 

 Chapter 2 presents LID in a historical context and provides background information on 

Florida’s stormwater management guidelines related to LID.  Specific topics addressed are: 

• How LID plays an important role in watershed restoration  

• Regulations that apply to LID implementation 

• Discussion of Florida’s climate, hydrology, and hydrography 

• How LID implementation is occurring around the Nation as well as in Southwest Florida 

 Chapters 3 and 4 provide details on two categories of LID appropriate for Southwest 

Florida, rainwater harvesting and infiltration-based practices. Specific topics related to these 

practices are: 

• Rainwater harvesting options 

• Rainwater harvesting design considerations 

• Rainwater harvesting case studies 

• Infiltration-based LID options 

• Infiltration-based LID desgin considerations 

• Infiltration-based LID case studies 

 Chapter 5 provides information on specific steps that can be taken to increase LID 

implementation in Southwest Florida: 

• Review of known LID implementation in the region 

• Review of Sarasota County’s LID design manual 
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• Evaluation of LID perceptions in a graduate level Urban Hydrology class 

• Interviews with government entities regarding LID implementation within their 

communities 

• Discussion of recommended steps to increase implementation 
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CHAPTER 2:  LITERATURE REVIEW 
 

2.1 History and Background of Stormwater Management and Low Impact Development 
 
2.1.1 Evolution of the Clean Water Act 
 
 The federal government has been attempting to protect citizens against aquatic pollution 

since the passage of the Federal Water Pollution Control Act of 1948, which mainly focused on 

state and local efforts.  In 1972, the Federal Water Pollution Control Act of 1948 was completely 

overhauled and re-named the Clean Water Act (CWA), CFR 33 U.S.C. §1251 et seq 1972 

(USEPA, 2012; USEPA, 2014).  The impetus for change came from a grassroots movement 

forlorn with the environmental neglect that lead to numerous fires from 1936-1969 on Ohio’s 

Cuyahoga River as a result of nonpoint source pollution (NOAA, 2008). 

 The CWA incorporated more stringent guidelines for point source and nonpoint source 

discharges into the nation’s water bodies.  Subsequently, point source discharges became 

unlawful without a permit from the Environmental Protection Agency (EPA).  Additionally, for 

increased water quality protection, discharges must now meet pollution control measures.  In 

1987, Congress updated the CWA to include stormwater discharges, which are typically 

considered nonpoint sources.  Two major water quality monitoring tools came from the 1987 

revision of the CWA.  First, a list of impaired water bodies must be provided by each state so 

that a Total Maximum Daily Load (TMDL) pollutant limit or budget can be set for the receiving 

waters.  Second, the National Pollution Discharge Elimination System (NPDES) permit was 

developed to regulate pollutants, discharges into receiving waters and identify additional 
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mitigation efforts prior to discharge if the receiving water body has a TMDL.  The primary 

enforcement tool for the CWA is the NPDES permit (EPAa, 2014). 

2.1.2 Connecting Stormwater Requirements Through Federal Permitting Criteria    
 
 Traditionally, stormwater management has been thought of as a necessary evil to deal 

with the amplified runoff associated with development and increased impervious area.  Before 

the 1987 revision of the CWA, little provisions or regulations existed to contain stormwater 

runoff, which causes streambank erosion and contains pollutants such as nitrogen, phosphorus, 

fecal matter, sediment, heavy metals, and oils.  Even with the construction of conventional 

detention/retention ponds, erosive velocities of discharges and pollutants were still being 

released to the receiving water body causing various ecological disruptions.  Once the CWA 

recognized stormwater discharges as a nonpoint sources of pollution, pre-treating its discharge 

became an important tool in improving the nation’s water quality through the use of stormwater 

Best Management Practices (BMPs) or in conjuction with Low Impact Development (LID). 

 Low Impact Development’s goal is to mimic the pre-development site hydrology by 

utilizing site design practices that store, infiltrate, evaporate, and detain runoff (PG County, MD, 

1999).  Employing LID practices can lead to runoff being managed in a way that reduces the 

impact of development, or re-development, and promotes the movement of water within an 

ecosystem or watershed along its natural path (EPAb, 2014).  The terms Green Infrastructure 

(GI) and LID are frequently used interchangably.  Green Infrastructure typically refers to a 

broader coverage area such as community or watershed level.  At the community level, GI 

incorporates sustainable development practices such as compact development, reduction of 

impervious areas, creation of walkable communities, and increases or retains open space as well 

as the inclusion of LID practices at the site level.  On the watershed level, GI is an inter-
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connected network of preserved or restored natural lands and water bodies that provide essential 

environmental functions (EPA, 2010). 

 The NPDES permitting requirements came in two phases; Phase I was implemented in 

1990 and Phase II was implemented in 1999.  In between these two phases, the EPA contracted 

with Prince George’s County, Maryland Department of Environmental Resources to develop, 

what is now the Nation’s Low Impact Development Manual, Low Impact Development Design 

Strategies: An Integrated Design Approach.  This is the seminal document that continues to lead 

LID implementation.  The opening pages of the National LID Manual repeatedly mention how, 

in 1999, LID was considered a radically different approach to stormwater management.  One 

could argue this is still true today, some 16 years later, as LID has not been widely adopted as a 

form of stormwater management to protect water quality despite being advocated through 

NDPES and Municipal Separate Storm Sewer Systems (MS4) permitting. 

 By obtaining a NPDES permit, the EPA can track pollutant loading in waterbodies either 

with or without an imposed TMDL allocation.  Stormwater is typically transported through 

MS4s.  Municipal Separate Storm Sewer System permits are required for municipalities and 

small urban areas.  Each MS4 permit is associated with a NPDES permit and the owner of the 

MS4 permit must develop a stormwater management program (EPAc, 2014).  Section 402(p) of 

the CWA establishes the regulation of stormwater discharges from three potential sources: 

MS4s, construction activities, and industrial activities.  Through the enforcement of this 

permitting mechanism, local surface waters such as streams, rivers, lakes or coastal waters will 

have a reduction in the impact of stormwater runoff.  According to the Florida Department of 

Environmental Protection (FDEP), surface water quality standards are set forth in Florida 

Administrative Code 62-302 and the associated table of water quality standards of section 62-
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302.503, while sections 62-303 and 62-304 establish the regulatory authority to regulate surface 

water quality and impose a TMDL on a water body (FDEP, 2015; PG County, MD, 1999).   

 For water bodies with a TMDL, LID technologies are recommended as a tool for current 

and future pollutant load allocations and/or reductions.  Using LID can reduce pollutants 

associated with stormwater and help restore the natural hydrology of the site or watershed (EPA, 

2008).  TMDLs are one of the driving forces behind the promotion of utilizing LID for pollutant 

removal.  There is a secondary, and equally important, driver in the implementation of LID: 

restoring the natural hydrology of the watershed.  This thesis will focus on restoring the natural 

hydrology, water conservation and implementation of LID within the context of Southwest 

Florida.  Though LID has largely been associated and promoted regarding its pollutant removal, 

the underlying idea of LID is decentralized stormwater management and promotion of 

groundwater infiltration.  Before discussing the status of LID in Florida, it is important to review 

the current status of stormwater management in Florida and within the Southwest Florida Water 

Management District (SWFWMD). 

The NPDES Phase I Municipal Separate Storm Sewer System (MS4) Permitting Resource 

Manual (2013) by FDEP is the living document guiding MS4 permittees toward stormwater 

compliance.  The legal authority is established in Section 403.0885, Florida Statutes, and in 

Section 402(p) of the Federal Clean Water Act and the regulatory requirements for NPDES MS4 

permits are set forth in Chapter 62-624, F.A.C.  Permittees have the option to impose a 

stormwater utility fee as a dedicated funding source for stormwater management programs 

through Section 403.0893, F.S.  Over 150 communities have implemented a stormwater utility or 

other stormwater dedicated funding source (FDEP, 2013).  
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  As part of the MS4 permit, municipalities are required to periodically review their land 

development codes to ensure they are promoting sustainable development with adequate 

infrastructure to protect public health, safety, and welfare.  By reviewing land development 

codes, municipalities have the ability to remove any impediments toward building a more 

sustainable development process that is crucial to protecting Florida’s water resources.  The 

NPDES Phase I Municipal Separate Storm Sewer System (MS4) Permitting Resource Manual 

(2013) acknowledges LID as one way of promoting newer, more sustainable stormwater 

management.  Although municipalities are responsible developing their own implementation and 

adherence of the MS4 permit, the State of Florida and SWFWMD dictate the minimum 

stormwater regulations.  Local governments have the option of creating more stringent 

requirements above and beyond the requirements of the State or the Water Management District.  

2.1.3 Current Status of Florida Stormwater Management 

 The State of Florida has been regulating stormwater discharges since the early 1980s to 

prevent pollution of Waters of the State and to protect the designated beneficial uses of surface 

waters.  Stormwater management is regulated at the State level by the FDEP, at the regional level 

by water management districts, and at the local level by municipalities.  Chapter 62-40 of the 

Florida Administrative Code (FAC), titled “Water Resource Implementation Rule”, sets the 

goals for stormwater management within the State of Florida.  This rule establishes that 

stormwater design criteria shall achieve at least 80% reduction of the average annual load of 

pollutants that cause or contribute to violations of State Water Quality Standards.  The design 

and performance criterion increases to 95% reduction when the stormwater system discharges to 

an Outstanding Florida Water (OFW) (FDEP, 2007).  
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Evaluation of Current Stormwater Design Criteria within the State of Florida (2007) is 

the current design manual provided by FDEP.  It details stormwater design guidelines by water 

management district.  This thesis will focus on the Southwest Florida Water Management 

District’s jurisdiction; however, some aspects of stormwater management are the same across the 

state, with the St. John’s and South Florida Water Management Districts having the most 

stringent stormwater management guidelines.  The Southwest Florida Water Management 

District provides their stormwater management requirements in Environmental Resource Permit 

Applicant’s Handbook Volume II (2013).  The handbook specifically addresses traditional 

stormwater management systems; their requirements are outlined in Table 2.1.  Both the State 

and SWFWMD stormwater guidance manuals address traditional stormwater management 

techniques such as wet detention, retention, and detention with filtration.  After reviewing both 

the State and the District guidelines, it was revealed neither specifically addresses LID or other 

emerging technologies as a possible solution for water quality or water quantity issues associated 

with stormwater management (SWFWMD, 2013; FDEP, 2007).   

The only State or District level guidance document found that addresses LID is the MS4 

permit, which is implemented at the municipality level.  Within the SWFWMD boundaries, some 

municipalities are implementing some aspects of LID such as Sarasota County, the City of 

Winter Haven, and the City of Dunedin (City of Dunedin, nd; City of Winter Haven, 2010; 

Sarasota County Government, nd).  Pinellas and Hillsborough counties are in the process of 

implementing more LID use in their stormwater management codes.  In 2014, Hillsborough 

County reviewed the codes and barriers to LID implementation in the publication Summary of 

Green Infrastructure Inconsistencies and Barriers in Codes and Guidance with Action Items for 

Hillsborough County (Hillsborough County Government, 2014).  Pinellas County outlines their 
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goals to implement more LIDs in their surface water management program requirements and 

review any code barriers to LID implementation in their comprehensive plan document titled The 

Compendium of the Pinellas County Comprehensive Plan (Pinellas County Planning 

Department, 2012). 

Table 2.1 Standard Stormwater Practices and Criteria for Southwest Florida 
(adapted from Evaluation of Current Stormwater Design Criteria within the State of Florida, 
2007; Environmental Resource Permit Applicant’s Handbook Volume II, 2013) 

Type of System Design Parameter Criteria 
Retention Treatment Volume On-line retention of runoff from 1” of rainfall 

If less than 100 acres, on-line retention of 0.5” of runoff 
Off-line retention of runoff from 1” of rainfall 
If less than 100 acres, off-line retention of 0.5” of runoff 

Volume Recovery Total volume available in less than 72 hours 
Vegetation Not Referenced 

Underdrain System Treatment Volume Not referenced 
Volume Recovery Not referenced 

Vegetation Not referenced 
Underground 
Exfiltration 

Treatment Volume Storage of runoff from 1” of rainfall 
If less than 100 acres, on-line retention of 0.5” of runoff 

Volume Recovery Total volume available within 72 hours  
Designed with a safety factor of 2 
Seasonal HGWT ≥ 1’ below bottom of perforated pipe  

Additional Design 
Requirements 

Pipe diameter must be a minimum of 12 inches 
Trench width must be a minimum of 3 feet 
Rock material in trenches must be enclosed in filter material 
Maintenance sumps must be provided in inlets 

Vegetation Not referenced 
Wet Detention Treatment Volume First 1” from watershed 

Volume Recovery No more than 50% within 60 hours, no more than 100% within 
120 hours 

Residence time Not referenced 
Littoral Zone Minimum of 35% littoral zone, concentrated at the outfall 

littoral zone shall be no deeper than 3.5 feet below the design 
overflow elevation 

Pond Depth Not referenced 
Configuration Not referenced 

Vegetation Mulching and/or planting is desirable but not required, unless 
the soils in the proposed littoral zone are not capable of 
supporting wetland vegetation; in this case, mulching will be 
required. Native vegetation that becomes established in the 
littoral zone must be maintained as part of the operation permit 

Pre-treatment Provisions to remove sediment, oils and greases from runoff 
entering the wetland. This can be accomplished through 
incorporation of sediment sumps, baffles and dry grassed 
swales or a combination thereof. A dry grassed swale system 
designed for detention of the first one-fourth inch of runoff 
with an overall depth of no more than 4 inches will satisfy the 
requirement for prior removal of sediment, oils and greases. 
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Table 2.1 (Continued) 
Type of System Design Parameter Criteria 

Off-line Treatment 
Systems 

Treatment Volume 
 

On-line retention of runoff from 1” of rainfall 
If less than 100 acres, on-line retention of 0.5” of runoff 

Volume Recovery Total treatment volume shall again be available within 72 hours, 
however, only that volume which can again be available within 36 
hours may be counted as part of the volume required for water 
quantity storage under Chapter 3 

Swales Treatment Volume Not referenced 
Volume Recovery Not referenced 

Dry Detention Use Restrictions Not referenced (generally discouraged) 
Treatment Volume Not referenced (generally discouraged) 

Volume Recovery Not referenced (generally discouraged) 
Detention with 

Filtration 
 
 
 

Treatment Volume 
 
 
 

On-line retention of runoff from 1” of rainfall 
If less than 100 acres, on-line retention of 0.5” of runoff 
Off-line retention of runoff from 1” of rainfall 
If less than 100 acres, off-line retention of 0.5” of runoff 
The treatment volume can be counted as part of the storage required 
for water quantity storage under AH II Chapter 3 

Filter System 
 
 
 

Permeability ≥ surrounding soil 
Stormwater must pass through a minimum of two feet of the filter 
material before entering the perforated pipe 
FDOT requirement for media - washed with <1% silt, clay, and 
organic matter 
Media uniformity coefficient > 1.5 
Effective grain size: 0.20-0.55mm 
Designed with a safety factor of 2 
Seasonal HGWT ≥ 1’ below perforated pipe centerline 

Volume Recovery Storage capacity restored in < 36 hours 
Discharges to 

Outstanding Florida 
Waters, Class I or II 

Waters 

Treatment Volume In general, an additional 50% of volume over and above standard 
design criteria (wet detention, detention with effluent filtration, on-
line retention or off-line retention) 

 
2.2 Florida’s Topography, Climate, Hydrography, and Hydrology 
 
 Florida’s penninsula region is remarkably flat, with little longitudanal topographic relief.  

It is covered in sandy soils and porous substrates; therefore, there is a short residence time for 

stormwater within the soils.  Florida’s ecosystems rely on annual rains for replinishment. These 

distinquishing characteristics mold the iconic scrub lands, pine lands, high and low hummocks, 

river and cypress swamps, savannas, as well as fresh and salt marshes.  The Tampa Bay region 

lies within the Gulf Coastal Plain physiographic subdivision and exhibits consistent 
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physiography.  Relatively flat bedrock yields the flat, low-lying terrain.  Within the Gulf Coastal 

Plain, the Tampa Bay region lies in the Gulf Coastal Lowlands and extends westward to the 

Central Highlands. The Gulf Coastal Lowlands are depicted by numerous lakes, very swampy 

areas, and marine features such as bars and barrier islands.  In Ecosystems of Florida, the Tampa 

Bay region is characterized by two physiographic districts, Eastern Flat Woods and Ocala Uplift 

Districts.  The Eastern Flat Woods District contains mostly flat wood pines, prairies, cypress 

domes, dunes, and mangroves, with surface materials being primarily sandy with areas of peat 

deposits.  The landscape is varied in the Ocala Uplift District containing distinctive low, rolling 

karst in addition to stream-sculptured hills, flats and swamps, and sandhills (Board of Regents of 

the State of Florida and the State of Florida, Department of State, for the Game and Fresh Water 

Fish Commission, 2001; see also Bureau of Geology, Florida Department of Natural Resources, 

1974; Florida State University, Institue of Science and Public Affairs, 1998). 

 Florida has a humid, sub-tropical climate with a strong, distinctive climatic cycle.  The 

Bermuda high pressure cell regulates rainfall within the State.  During the fall and winter 

months, the high pressure cell hinders convective clouds from turning into thunderstorms.  Fall 

and winter storms are characterized by their long duration, low to moderate rainfall intensities, 

and coverage of large land areas.  During late spring and summer, the high pressure cell weakens 

creating convective storms late afternoon and evenings on the Gulf of Mexico.  The convective 

storms associated with Florida summers are induced by the diurnal heating of the land surface 

along with the sea breeze.  Summer, convective storms have notably high rainfall intensity, short 

duration, and cover small areas whereas the winter, frontal storms have a longer duration, a more 

broad land coverage, and traditionally less intensity than the summer storms (Board of Regents 
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of the State of Florida and the State of Florida, Department of State, for the Game and Fresh 

Water Fish Commission, 2001). 

 Climate conditions may be one of Florida’s most important resources; although it lies 

along the same latitude as most of the world’s deserts it is one of the wettest states in the country, 

with an annual average of 53 inches of rainfall.  Nationally, it is one of the highest ranking states 

for rainfall characteristics in the following categories: proportion of summer rainfall versus 

winter rainfall, number of summer months exceeding 4 inches of rainfall, amount of rainfall in 

the wettest month; difference in rainfall amounts between the average wettest and driest months, 

and the maximum expected 30 minute rainfall.  The Tampa Bay region is located within the 

South Central Climatological Division, a term which was utilized by the former United States 

Department of Agriculture crop reporting districts (Florida State University, Institute of Science 

and Public Affairs, 1998). 

 Florida ranks third in the nation for the amount of inland water among the 50 states, with 

inland water bodies totaling 3,383 square miles.  Streams, springs, lakes, wetlands, and rivers 

make up the state’s inland water bodies.  The total number and miles of perennial streams and 

rivers is more than 1,700 and covers 22,993 miles.  The total number of lakes, ponds, and 

reserviors, which are greater than 10 acres by state definition, is 7,748 and have a combined 

coverage of 2,390 square miles.  Freshwater and tidal wetlands cover 17,698 square miles of 

Florida.  There are more than 1,000 known springs in Florida, with 33 considered first-

magnitude springs.  The detailed shoreline area is 8,426 statue miles, which includes bays and 

sounds (FDEP, 2014).  The state’s natural hydrography provides temporary storage of surface 

runoff.  When the natural depressional storage is altered in an urban landscape, man made 
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stormwater facilities must be created to mitigate the additional runoff associated with an altered 

landscape and increased impervious cover.   

 Originally, wetlands covered more than half of Florida.  During the early settlement of 

Florida, wetlands were drained for farming ground and mosquito control, with little concern or 

knowledge of their beneficial hydrologic processes.  Wetlands provide depressional storage of 

surface runoff, treatment of runoff, and aquifer recharge.  Wetlands and uplands can be located 

adjacent to each other.  With Florida’s flat topography and high water tables, they frequently 

allow water and nutrients to flow into adjacent ecosystems thereby creating a closely integrated 

landscape (Board of Regents of the State of Florida and the State of Florida, Department of State, 

for the Game and Fresh Water Fish Commission, 2001).  Ecosystems of Florida (2001) describe 

the benefits of various wetlands such as: wildlife production, flood control, nutrient retention, 

water retention for stormwater, and water recharge of aquifers.  Wetlands are considered 

benevolent for providing such services with no appreciable cost to the community for without 

these services, infrastructure costs rapidly increase when natural functions cease to exist. 

 Florida contains about 7,800 lakes greater than 0.4 hectares (1 acre) in surface area, 

which covers about 6 percent of the landscape.  Thousands of these lakes are small in size, while 

there are a few large lakes.  According to the Florida Lakes Database, three-quarters of the lakes 

are less than 5 meters (15 feet) in depth.  Lake evaporation is roughly equivalent to annual 

rainfall on average.  There is a strong hydrologic connectivity between lakes, some as far apart as 

280 kilometers (174 miles).  Residence time in Florida lakes can be ten times longer than in 

northern states making them vulnerable to the damaging consequences of urbanization (Board of 

Regents of the State of Florida and the State of Florida, Department of State, for the Game and 

Fresh Water Fish Commission, 2001). 
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 Southwest Florida has five first-magnitude springs, which discharge 64.6 million gallons 

of water per spring, per day.  This includes the popular tourist destination Weeki Wachee 

springs.  Springs are a direct conduit to the aquifer; water is infiltrated from surface rainfall to 

the aquifer and as pressure builds within the system, the water is discharged back to the surface 

through a spring vent.  Springs provide natural habitat for wildlife including Manatees during 

winter months which draws tourism.  The aquifer that feeds springs is the major source of 

drinking water for the State of Florida.  Approximately 70% of the Tampa Bay Region’s 

drinking water comes from ground water (Tampa Bay Water, 2015).     

 Water Resources Atlas of Florida describes the hydrologic cycle as a closed system with 

regard to water (Florida State University, Institute of Science and Public Affairs, 1998).  Rain 

falls upon land surfaces and may be returned to the atmosphere by evaporation from land, water, 

and plant surfaces or ultimately flows toward the Gulf of Mexico via surface runoff.  Upon 

making landfall, rainwater has a delicate interplay between the depressional storage provided by 

swamps, lakes, streams, and the ground (Bureau of Geology, Florida Department of Natural 

Resources, 1974).  Remaining rainfall on the land may take many different paths such as 

overland flow or infiltration.  Infiltration may occur through the soil surface directly or after 

residing temporarily in depressional storage (Florida State University, Institute of Science and 

Public Affairs, 1998).  One connection of the availability for surface runoff is the difference 

between annual rainfall and evapotranspiration.  In Southwest Florida, this potential difference 

has a negative value where evapotranspiration exceeds annual rainfall (Board of Regents of the 

State of Florida and the State of Florida, Department of State, for the Game and Fresh Water 

Fish Commission, 2001). 
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 Soil type plays a crucial role in many aspects of drainage.  Geology influences soil type 

and geologic deposition materials have different drainage characteristics.  For example, as a 

general rule, soils on the Central Ridge are very well drained, whereas soils on the Coastal Ridge 

may be poorly or very poorly drained (Florida State University, Institute of Science and Public 

Affairs, 1998).  A large portion of the Florida landscape has soils with water tables within reach 

of plant roots for at least part of the year, mostly during the rainy season (Board of Regents of 

the State of Florida and the State of Florida, Department of State, for the Game and Fresh Water 

Fish Commission, 2001).   

 Florida has the largest acreage of Aquods, wet sandy soils with an organic stained 

subsoil, occuring on flatwood lands in the nation.  The most widespread flatwood soil in Florida 

is the Myakka Fine Sand (MFS).  Myakka Fine Sand is the Official Soil of the State of Florida.  

It is a native soil of Florida and is not present in any other state.  Florida has more than one and 

one-half million acres of MFS, it is the most extensive soil in the state.  As a flatwood soil, MFS 

has typical characteristics of flatwood soils such as being poorly or somewhat poorly drained, 

sandy texture, organic matter stained subsoil, low ion exchange capacity, low silt and clay 

content, and poor moisture retention (Florida Association of Professional Soil Classifiers & 

Florida Chapter of the Soil and Water Conservation Society, 1993)  

 The United States Department of Agriculture’s Soil Survey (1983) provides technical 

information on the Myakka Soil Series.  The Myakka series is a deep, sandy soil which may be 

poorly or very poorly drained, depending on which sub-class occurs on site.  Myakka Fine Sand 

is virtually level, with slopes from 0 to 2%, and occurs on broad plains on the flatwoods.  The 

seasonal high water table fluctuates for one to four months of year to a depth of 10-12 inches 

from the land surface and during the remaining months, the water table recedes to an average 



20 

depth of 40 inches.  The Myakka series can be designated as MFS with a hydrologic soil group 

(HSG) of B/D, a MFS with a HSG of D, a MFS on urban land with a HSG of B/D, or a MFS on 

tidal land with a HSG of D.  A dual HSG designation of B/D indicates the soil series has B, well 

drained, soil properties however, during the rainy season it can have D, very poorly drained, soil 

properties since the seasonally high water table comes within 1 foot or closer to the land surface.  

The HSG D is assigned to soils which flood year-round and the seasonally high water table is 

within a foot of or at the land surface from January to December. 

 Myakka Fine Sand is rapidly permeable through all soil layers, as such, the available 

water capacity is low.  Permeability is a quality of the soil which allows water to move 

downward through the soil profile.  Permeability has the units of inches per hour and is an 

indication of the amount of water that can infiltrate in an already saturated soil.  For MFS, the 

permeability is considered rapid, since it can infiltrate 6.0 – 20.0 inches per hour in an already 

saturated soil.  Available water capacity, also known as available moisture capacity, is the 

maximum amount of water a soil can hold for plant uptake.  Available water capacity is 

generally defined as the difference between soil water at field capacity and wilting point.  The 

units are inches of water per inch of soil.  Myakka Fine Sand has a low available water capacity, 

which ranges between 0.02 - 0.05 in./in (NRCS Soil Survey, 1983). 

 Florida has a special set of natural hydrologic features that need to be considered when 

designing LIDs or traditional stormwater management.  The rainfall patterns and soils are not 

necessarily complimentary across the board however, MFS does have an extremely high 

permeability and if rainfall rate does not exceed the infiltration capacity, infiltration-based LIDs 

can be a consideration as a method of stormwater management.  Low topography, soils, and 
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abundant hydrography create an inter-connected landscape that is highly sensitive to increased 

impervious area and pollutants from runoff. 

2.3 Impacts of Urbanization and the Hydrology of Low Impact Development 
 
 Throughout the U.S. there are thousands of CWA section 303(d) waters listed as 

impaired for stormwater-source pollutants such as pathogens, nutrients, sediments and metals 

(EPAb, 2013).  Runoff is the primary source of non-point source pollution as well as being 

linked to public health issues, economic losses, and stream and ecosystem degradation (Cizek & 

Hunt III, 2013).  Urbanization and traditional stormwater management cause stream channel 

erosion, increased imperviousness, which reduces infiltration and runoff velocities, decreased 

stream baseflow components, alteration of natural flow patterns, loss of depressional storage, 

increased stream temperatures, increased incidence of flooding and more costly damage, and the 

need for imported water for consumer use (Cheng, et al., 2001; Cheveney & Buchberger, 2013; 

Holman-Dodds, et al., 2003).  As land use transitions to more urbanization, waterbody 

impairments from stormwater sources may increase and thereby may require additional TMDLs.  

Incorporating LID into TMDL reduction plans can encourage implementation actions that can 

reduce stormwater runoff loads and erosive effects, and help meet pollutant loadings identified in 

the TMDL (EPA, 2008).   

 As urbanization transforms the natural landscape or open space by increasing impervious 

areas to create residential, commercial, or industrial land uses, it simultaneously causes 

hydromodifications, such as reduced soil-water storage and reduced base flows due to terrain 

alteration, modification of vegetation and soils.  Although controlling runoff volume is essential, 

runoff reduction alone will not be enough to protect water bodies without consideration of 

relevant hydrologic and geomorphic regimes that affect stream stability and beneficial uses.  
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Mitigating the impacts of hydromodification include: peak flow control of stormwater runoff, 

maintaining time of concentration, promoting groundwater recharge, controlling stormwater 

runoff volume, and flow duration control (Palhegyi, 2010).  

 Conventional stormwater management falls short in providing environmental protection 

because it does not address all changes of the flow regime.  Though the cumulative effects of 

small-scale stormwater management on the basin scale hydrology are not fully understood, the 

argument can be made for a more encompassing approach to stormwater management that also 

includes restoring ecologically important aspects of the pre-development hydrology.  By 

emphasizing restoring small-scale hydrologic processes, such as those offered by LID, it is 

possible to restore the ecological function and structure of urban streams.  Small-scale, flow-

regime, stormwater management systems protect vulnerable, small, headwater streams, which 

have their own equally important ecological value (Burns, et al., 2012). 

  Burns et al. (2012) discussed changes in patterns and volume of infiltration, 

evapotranspiration, and surface and subsurface flows associated with conventional approaches to 

stormwater management.  These changes include increased frequency, magnitude, and volume of 

runoff as a result of directly connected impervious areas; increased runoff as a result of reduced 

evapotranspiration from vegetative cover; and reduced stream baseflow as a result of reduced 

infiltration.  Stormwater BMPs and LID lessen the impacts of urbanization by increasing water 

storage and infiltration, which in turn, decreases urban stormwater runoff volumes (Cheveney & 

Buchberger, 2013).  Low Impact Development carefully manages stormwater runoff by directing 

it to an adjacent pervious area thereby reducing surface runoff, recharging local groundwater 

aquifers and streams, reducing stream bed erosion and widening, and improving water quality 

(Holman-Dodds, et al., 2003). 
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 Research into the sustainability of LID requires accurate methods of quantifying and 

analyzing the effects of urbanization as well as the hydraulic benefits of Low Impact 

Development (Hollander, Eyring, & Schmidt, 2006); (Cheveney & Buchberger, 2013).  

Quantifying the performance of the full range of stormwater management technologies available 

for restoring or protecting pre-development hydrology is essential for models to accurately 

represent the relationship between small-scale stormwater management and catchment-scale 

responses (Burns, et al., 2012).  Holman-Dodds, et al. (2003) posed significant LID research 

opportunities or challenges to quantify the implementation of LID practices.  They discussed 

quantifying results of vegetative and soil properities, providing design guidance for urban 

lanscape planning with respect to location and surface treatment of infiltration zones, and 

quantifying hydrologic impact and design parameters to satisfy municiaplity concerns regarding 

urban runoff and flooding.   

2.3.1 LID Hydrology Case Studies 

 Palhegyi (2010) discussed LID requirements to mimic pre-development hydrology from a 

proposed development so that it protects receiving water bodies.  The paper states that for 

stormwater management controls to be successful, they must be based on scientifically sound 

principles aligned to in-stream process such as erosion potential.  Several studies have shown 

flow duration control has a more positive impact on stream protection than peak flow matching 

and hydrograph matching.  Flow duration control maintains pre-development runoff magnitude, 

duration, and frequency.  It is successful when the post-development flow duration curves match 

pre-development curves.  

 Palhegyi (2010) promotes the use of flow duration control for stormwater discharges to 

maintain predevelopment magnitude, frequency, and duration of hourly runoff thereby, 
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maintaining the distribution of instream work.  Aside from the standard stormwater 

detention/retention ponds, infiltration based LID practices, such as infiltration swales and 

bioretention, can be used for flow duration control.  Using HEC-HMS, the Laguna Creek 

watershed was modeled using flow duration control measures to mimic pre-development stream 

flow.  For stormwater management control of runoff in the model, small basins and bioretention 

were utilized.  Flow duration control methods matched the 49-year historic record average of 

stream flow and discharge rate from the watershed. 

 According to Cheng et al. (2001), LID hydrologic design employs a distributed control 

approach to stormwater management by using integrated management practices and safeguarding 

a hydrologically functional landscape.  The distributed control approach hydrologically regulates 

stormwater runoff to maintain pre-development time of concentration by storing runoff in 

discrete units (integrated management practices) distributed throughout the site.  To compensate 

for hydrologic transformations of development, both structural and non-structural practices may 

be required to preserve the hydrologic regime of pre-development conditions.  These integrated 

management practices are what most know as individual LID technologies or practices today.  

Integrated management practices make use of micro-scale, distributed practices which, when 

implemented properly, allow post-development runoff and peak volume match pre-development 

runoff.  A hydrologically functioning landscape preserves as much undisturbed land as possible; 

it also retains high infiltration capacity soils.  Combining distributed control, integrated 

management practices, and a hydrologically functioning landscape together during development 

can sustain the pre-development conditions, enhance aesthetics, and retain habitat value. 

 Cheveney & Buchberger (2013) conducted a water balance study in the Mill Creek 

Watershed, which is located in southwestern Ohio and contains 169 mi2 of the Cincinnati 
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metropolitan area.  The water balance study was performed using the modeling software, 

Aquacycle.  They looked at the pre-development (historic) water balance, the current water 

balance, and the water balance after implementing green infrastructure.  When comparing pre-

development and current, developed conditions, two values were noticably altered, the total 

volume of water entering and leaving the watershed increased 28% and the annual 

evapotranspiration declined by 22% compared to pre-development conditions.  In the conclusion, 

the paper mentions that with proper planning and implementation of appropriate GI, there could 

be a reduction in some of the undesirable hydrologic impacts of urban development.  For Florida, 

it is plausible that evapotranspiration may remain the same in a post-development landscape as 

large, regional wet detention ponds are often utilized in series for stormwater management. 

 Holman-Dodds et al. (2003) conducted a water balance study on the North Branch of the 

Ralston Creek watershed in Iowa City, Iowa; specifically, the water balance included 

precipitation, evaporation, transpiration, soil water storage, and deep soil drainage.  The study 

conducted the water balance on three development scenarios: pre-development, where the entire 

landscape is vegetated; high impact, where traditional pipe and concrete stormwater management 

is utilized; and low impact, where runoff is directed to a pervious area for infiltration.  A variety 

of SCS soil classifications were modeled using UNSAT-H, as well as storm events ranging from 

0.5 inches to the 100-year, 24-hour design storm depth of 7.13 inches.   

 In this modeling study for high infiltration capacity soils, like those in Florida, the 

potential increased use of LID on the watershed level could be utilized to reduce runoff, increase 

infiltration, and promote aquifer recharge.   The study results for high infiltration soils show the 

LID case only slightly generated more runoff than the pre-devleopment case when compared to 

the high impact development case.  For the pre-development case, less than 10% of runoff was 
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generated for rainfall up to 7 inches; for the LID case, less than 10% of runoff was generated up 

to 5 inches of rainfall and for 5-7 inches of rainfall, runoff increased gradually to 20%; and for 

the high impact case, 50% of runoff was generated consistently for all rainfall scenerios, which is 

consistent with the 50% impervious area.  When measuring the difference in runoff between pre-

development and high impact development for more pervious soils, it appears the relative 

impacts of urbanization is greater.  However, the potential for mitigation of the impacts of 

urbanization through runoff reduction is also much greater for high infiltration capacity soils.  

Having a greater potential for mitigation for Florida’s highly pervious soils is significant in that 

it opens the door for more research in quantifying the benefits of LID. 

 The storm hydrographs for all three development cases show LID is most effective in 

replicating pre-development for the 2-year, 24-hour design storm compared to the 100-year, 24-

hour design storm in the North Branch Ralston Creek watershed.  During the 20-year water 

budget simulation period for the three development scenarios, high impact development, with 

traditional stormwater management, had the largest increase in direct runoff and the largest 

decrease in groundwater recharge and evapotranspiration.  The LID scenario still had double the 

amount of direct runoff compared to pre-development; however, recharge and evapotranspiration 

were closer to pre-development than high impact development. 

 Burns et al. (2012) compared the effects of conventional, drainage-efficiency stormwater 

management and load-reduction approach to stormwater management to identify their hydrologic 

shortcomings.  The land-parcel scale study was conducted in Australia within two adjacent 

watersheds of similar size; Brushy Creek, an urbanized catchment, and Olinda Creek, a primarily 

forested catchment.  Continuous modelling software, MUSIC, was utilized to model stormwater 

runoff, quality, and treatment.  MUSIC was used to model surface runoff generated and 
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infiltration of a 500 m2 of forest and then model the same parcel as if it were 100% impervious.  

The hydrology of the land parcels, forested and 100% impervious, was compared with 1) 

traditional stormwater management, 2) load-reduction stormwater management using a 

biofiltration system with an underdrain, and 3) flow-regime stormwater management using a 

combination of rainwater harvesting and a rain garden.  It should be noted the biofiltration 

system was what is typically known as a modified bioretention with an internal water storage 

zone.  Runoff from the impervious surface was highest using traditional stormwater 

management, load-reduction management reduced runoff only slightly as it contains an 

underdrain, and flow-regime management produced the least runoff and was the closest to the 

forested condition.  

2.4  Implementation of LID Nationally 

 Low impact development implementation is encouraged by EPA in both their TMDL and 

MS4 permit programs.  For TMDL reduction, LID is encouraged to help with erosive stormwater 

velocities and nutrient reduction potential (EPA, 2008).  For the MS4 permit, LID is encouraged 

as a more environmentally sustainable method of stormwater management (EPAe, 2014).  

Implementation levels vary by state and muncipality.  The EPA lists Prince George’s County, 

Maryland and Pugent Sound as their primary implementation case studies (EPAe, 2014).  For 

EPA’s Community Scale Studies, the common thread for LID implementation is for the 

reduction of Combined Sewer Overlfows (CSOs) (EPAg, 2014).   

 Due to a violation of the CWA by CSOs, Consent Decrees are a mandatory mechanism to 

implement LID to achieve overflow reductions.  A small sampling of major cities with Consent 

Decrees include Harrisburg, PA; Philadelphia, PA; Washington, DC; Kansas City, MO; Chicago, 

IL; and Milwalkee, WI (Milwaukee Metropolitan Sewerage District, 2012; Philadelphia Water 
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Department, 2015; United States District Court for the District of Columbia, 2003; EPAa, 2015; 

EPAb, 2015; EPAc, 2015).  Though some cities were once required by Consent Decree imposed 

by EPA to reduce CSOs through the use of LID, they have since come to embrace such practices.  

For example, Milwaukee, Philadelphia and Washington, DC have dedicated publications and 

websites providing stakeholder education on LID implementation and ecological services 

potentially provided when installed properly (Milwaukee Metropolitan Sewerage District, 2012; 

Philadelphia Water Department, 2015; District of Columbia Water and Sewer Authority, 2015). 

 Statewide adoption of LID implementation can vary in their strategies.  The State of 

Vermont aimed to make their LID implementation successful by focusing on successes, barriers, 

and mistakes made by other agencies across the United States.  They contacted agencies 

involved in stormwater management ranging in size from EPA to small agencies with few staff.  

This background investigation has lead to Vermont’s 2014-2019 Green Infrastructure 

Implementation Plan (Vermont Department of Environmental Conservation, 2003).   

 Other states that have incorporated LID into their stormwater management include Rhode 

Island, Maryland, Virgina, and Minnesota.  Rhode Island has incorporated LID implementation 

as the “industry standard” in their stormwater management policies.  The three main goals of the 

Rhode Island incorporation of LID in development and redevelopment projects is to avoid 

unnecessary environmental impacts, reduce environmental impacts, and manage environmental 

impacts at the source.  Maryland has incorporated LID through the use of an Environmental Site 

Design.  To the “Maximum Extent Possible” development sites must utilize better deisng 

techniques, alternative surfaces, non-structural LID techniques, and small-scale LID practices.  

Some of the LID practices include downspout disconnection, green roofs, permeable pavements, 

bioretention, and other infiltration based practices.  Virgina utilizes a Runoff Reduction 
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Approach.  The Runoff Reduction Approach decreases the total runoff volume through canopy 

interception, infiltration, evapotranspiration, and rainwater harvesting.  Minnesota incorporates 

Minimal Impact Design Standards (MIDS).  Minnesota anticipates that by the utilization of 

MIDS this will become the next generation in stormwater management and is intented to 

implement LID as the primary method for new development.  These are just a few states that 

have incorporated LID into their state stormwater design manuals as a method to overcome water 

quality and water quantity issues associated with stormwater (Vermont Stormwater Management 

Program, nd). 

 The Center for Neighborhood Technology (2007) investigated implementation of LID 

and green infrastructure (GI) by five major US local governments.  This included the 

Metropolitan Water Reclamation District of Greater Chicago (MWRD), the City of Chicago, the 

City of Philadelphia, the City of Seattle, and the Milwaukee Metropolitan Sewerage District 

(MMSD).  The case studies of these five government entities reviewed resources that were 

devoted to GI as of the date of publication, actively promoted LID practices, and projects or 

planned projects to further public education and achieve an increased presence of GI within their 

communities.  A breakdown of each government entity’s date of updated stormwater regulations, 

which include implementation of GI on some level, amount of designated funds for GI 

implementation, if available, pilot projects demonstrating GI/LID practices, specific campaigns 

addressing GI, and any specific LID practices that are actively promoted for that entity is 

provided in Table 2.2. 

 Struck et al (2011) evaluated the required scale of implementation and quantified benefits 

associated with several LID projects that were being assessed or applied to achieve objectives 

beyond localized stormwater management.  The research objective for two projects, Toledo, OH 
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and Los Angeles County, CA, was to highlight the integration of LID along with regional 

management strategies to control water quantity and water quality as well as supplement current 

infrastructure.  An additional goal of this project was to provide further information on managing 

urban watersheds through the use of LID and potentially inform regional or national approaches 

to watershed management. 

Table 2.2 Case Studies of Green Infrastructure Implementation by Five Major U.S. Local 
Governments (adapted from Center for Neighborhood Technology, 2007) 

Government 
Entity 

Updated 
Stormwater 

Regulations with 
GI components 

Money Designated to 
Green Infrastructure 

Implementation 
Pilot Projects Green Infrastructure 

Initiatives 
Specific LID 

practices 

MWRD 2004 $909,132 or 22.2% of 
the 2007 Stormwater 
Fund expenditures 

Native Prairie 
Landscaping at 

District properties 

Native Prairie 
Landscaping at District 

properties 

Not addressed 

Rain barrel distribution 
in CSO areas 

Wetland nutrient 
abatement downstream 

of treatment plant 
outflows 

City of Chicago 2008 $13.1 million over 5 
separate departments 

Road realignment 
and grade separation 

to divert runoff to 
new pond and 

vegetated swale 
rather than directly 
discharging runoff 
into nearby river 

Rain Barrel and Rain 
Garden Program 

Bioswales 

Green Alley Program Water Outreach 
Campaign 

Downspout 
disconnection 

Green Streetscape Green Roof Grant 
Program 

Pervious pavement 

Green Alleys Tree planting 
Green roofs 
Rain barrels 
Rain gardens 

Public education 
and outreach 

City of 
Philadelphia 

2006 Not addressed Green Roofs Tax 
Credit 

Watershed plans Public education 
and outreach 

Schuylkill Action 
Network 

Rain gardens 

Best Management 
Practices Recognition 

Program 

Green roofs 

Fairmount Park Water 
Works Interpretive 

Center 

Permeable 
pavement 

Rain barrel distribution Bioswales 
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Table 2.2 (Continued) 
Government 

Entity 
Updated 

Stormwater 
Regulations 

with GI 
components 

Money Designated 
to Green 

Infrastructure 
Implementation 

Pilot Projects Green 
Infrastructure 

Initiatives 

Specific LID 
practices 

City of 
Philadelphia 

(cont’d) 

   TreeVitalize 
GI implementation at 

public schools 
Golf Course program 

to encourage BMP use 
Transformation of 

vacant lots into green 
spaces 

 
Tree plantings 

City of Seattle 2008 $31.9 million or 12.7% 
of the Public Utilities 

Drainage and 
Wastewater Budget 

Viewlands Cascade 
ditch retrofit with 

vegetated cascading 
step pools 

Natural Drainage 
Systems 

Public education 
and outreach 

Completed retrofit of 
existing streets with 

LID practices 

Vegetated swales 

Street Edge 
Alternatives 

Native landscaping 

Restore Our Waters 
Strategy 

Drywells 

Public Utilities 
Department 

Comprehensive 
Drainage Plan 

Pervious pavement 
Rain barrels 

Cisterns 

MMSD 2003 $5.2 million or 35% of 
the budget 

Stormwater BMP 
demonstration 

projects 

Rain barrel distribution 
program 

Public education 
and outreach 

Wet Weather Peak 
Flow Reduction 

program 

Greenseams land 
acquisition program 

Downspout 
disconnection 

Water Quality 
studies 

Rainwater Rerouting 
Project – GI to divert 

stormwater from CSOs 

Rain gardens 

Strategic Plan for 
Stormwater Runoff 

Reduction 

Green parking lots 
Pocket wetlands 

Rain barrels 
Green roofs 

Stormwater trees 
Bioretention 

Drywells 

  

Toledo, OH was under a Consent Decree to develop a Long Term CSO Control Plan.  

One aspect of the Consent Decree included the utilization of GI to reduce the number of 

overflows per year.  In order to reduce the number of overflows and implement GI projects, 

Ohio’s Water Pollution Control Loan Fund (WPCLF) Green Project Reserve received 

$220,623,100 in funding from the American Recovery and Reinvestment Act (ARRA) to 

stimulate the economy through water pollution control projects.  Approximately 20% of the 
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Federal funding received was reserved for GI, water/energy efficiency, and environmental 

innovation.  Ohio subsidized most of its green reserve projects by providing 100% principal loan 

forgiveness up to $5,000,000 (Struck, et al., 2011). 

 The WPCLF Green Project Reserve funded a pilot project on Maywood Avenue located 

in Toledo to address its frequent street and basement flooding as well as its contribution to CSO 

overflows.  Out of the fifteen GI funded projects, the Maywood Avenue Project is one of two 

projects employing bioswales and rain gardens to address stormwater runoff.  In addition to 

offseting drainage inadequacies in the neighborhood, the site was chosen to demonstrate to the 

local area that the City is concerned about residents’ quality of life.  Public outreach and 

engagement were vital for this project, as previous experience in similar neighborhoods to the 

Maywood area had shown the residents were leery of local government.  By engaging residents 

throughout the project, it helped them understand the connection between planning, managing 

stormwater, improving street aesthetics, and alleviating basement flooding. 

 For this project, preliminary design considered not only the existing infrastructure but 

investigated any potential geotechnical issues as well as pedestrian, bicycle and automotive 

traffic and parking requirements.  Final design included updates to inlets of the storm sewer 

system, pervious pavement, and bioswales.  Updating the inlets to the storm sewer system will 

help to hydraulically separate the two systems and reduce surface flooding that flows towards 

Maywood Avenue and the bioswales will reduce peaks flows within the storm sewer system.  

Focusing on the GI practices, pervious pavement was installed in sidewalks and driveways and 

bioswales were installed parallel to the road in the right of way.  This combination was 

determined to be the most cost effective and least maintenance intensive options.  The bioswales 
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provided 0.35 inches of watershed runoff storage in addition to providing an aesthetic amenity to 

the neighborhood (Struck, et al., 2011). 

 In addition to Toledo, Ohio, Struck et al. (2011) reviewed GI implementation in Los 

Angeles County for the Ballona Creek and Los Angeles River at both the county and 

municipality level.  Los Angeles County is the NPDES permit holder for the incorporated areas 

of the area and therefore, is responsible for the water quality at receiving water bodies.  The 

project objectives were to identify areas of opportunity for green infrastructure solutions to meet 

TMDL pollutant targets.  The County wanted to improve water quality in addition to increasing 

infiltration to aquifers and providing aesthetic amenities in public areas. 

 Los Angeles County and the City of Los Angeles origninally had differing opionins on 

how to best manage stormwater to address water quality, water quantity, and water supply issues.  

The County determined a regional, mostly centralized approach of managing stormwater.  Dry 

detention and infiltration basins were the large, centralized stormwater management facilities the 

County felt met their cost/benefit goals.  Since the stormwater was flowing into the City, the City 

evaluated the utilization of distributed LIDs for implementation upstream of the County’s 

centralized systems.  The City of Los Angeles and Los Angeles County catgeorized the 

following LID practices to supplement the effectiveness of the centralized systems in order of 

preference: bioretention, pervious pavement, and bioswales.  The City and County determined 

these were the best LID practices based on their applicability, cost effectiveness, and climatic 

considerations of the sub-watersheds within the project area. 

 The distributed LID BMP pilot study in Los Angeles County was to make use of the 

County datasets to investigate and review BMP optimization solution techniques as well as 

evaluate the cost and benefits of proposed management options, focusing on structural BMP 
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solutions.  A two-step approach was applied to investigate, review, and optimize site-scale LID 

distribution and implementation.  The first step identified the optimal, site-scale LID practices 

for each type of land use.  The second step incorporated the optimal, site-scale LID practices 

from step one and applied them along with the centralized systems to an entire watershed.  The 

simulation in step two determined which LID practices, as well as centralized stormwater 

management systems, would achieve the Waste Load Allocations determined by the watershed’s 

TMDL thereby providing Los Angeles County the ability to prioritize projects and funding 

(Struck, et al., 2011). 

 Successful integration of LID into stormwater management is key to encouraging other 

states and municipalities toward greater LID implementation.  Initial LID deployment and 

subsequent continued use has been increasingly executed at various government levels, each 

with its own individual reason and method.  According to The Center for Neighborhood 

Technology (2007), successful implementation orginates from strong environmental leadership 

and installation of pilot projects.  In this report, strong leadership is described as one that 

addresses the barriers to implementation, shares cost with partnerships on pilot projects, and if 

necessary, pass ordinances that require development and re-development to incorporate green 

infrastructure.  Pilot projects are also instrumental in LID acceptance and success.  They provide 

a means of measuring LID performance and can reveal hidden costs as well as other design 

parameters that should be taken into account regionally.  Struck et al. (2011) observed sucessful 

implementation occurs when modeling and other tools are utilized for spatial and cost 

optimization as well as incorporation in future Capital Improvement Projects.   
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2.5  Florida LID Implementation 

 There is growing interest in LID among those working in the environmental and 

stormwater management community in Florida; however LID installation are still sparse.  Unlike 

other states, Florida does not have many CSOs nor is the State under a Consent Decree requiring 

implementation of LID and GI to address water quality issues associated with stormwater.  The 

Florida Aquarium pervious pavement and associated bioretention strips are a frequently cited 

LID practice in Florida, despite approaching two decade old research (EPA, 2000).  When 

looking at the National LID map provided by the Low Impact Development Atlas, the majority 

of LID implementation is clustered around the Mid-Atlantic region, the Northeast, and along the 

West Coast of the U.S.  Unfortunately, there is no one central location containing data of Florida 

sites with LID implementation.  Implementation information is scattered amongst various data 

sources. 

 The International Stormwater BMP Database is generally discussed as the initial ‘go-to’ 

website to obtain detailed BMP/LID data in a state.  Florida has eighty-four BMPs listed, of 

which, thirty-seven fall under the general definitions of LID.  These categories include grass 

swales/strips, infiltration trenches, media filters, wetland basins, and wetland channels.  For 

Florida, most of the project descriptions state they are from the FDEP database.  A summary of 

LID practices, the county they are located in, and their drainage area are provided in Table 2.3, 

Note that some projects have multiple practices on one site and others have the same practice 

with the same drainage area repeated for study purposes (International Stormwater BMP 

Database, 2014). 

Table 2.3 International Stormwater BMP Database Summary of LID Practices in Florida 
(adapted from: International Stormwater BMP Database, 2014)  

LID Practice County Drainage Area (ha) Number of Units 
Grass swale/strip Orange unknown 2 

< 0.1 4 
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Table 2.3 (Continued) 
LID Practice County Drainage Area (ha) Number of Units 

Grass swale/strip Monroe 9.85  
Hillsborough < 0.1 5 

Infiltration Trench Brevard 1.55 3 
0.66 3 

41.48 2 
6.27  

Media Filter Orange 48.93 Media: Other 
10.12 Media: Other 

Leon 1105 Media: Sand 
0.32 Media: Sand 

Hillsborough 4.21 Media: Other 
Wetland Basin Osceola 4047 1 

Hillsborough 53.58 1 
8.35 1 

Orange 213.28 1 
Okeechobee 89.03 1 

Seminole 22.42 1 
Wetland Channel Leon 1105 1 

Orange 16.84 1 
 
 The National LID Atlas (University of Connecticut, nd) is another website that provides a 

database of LID implementation throughout the U.S.  Florida has five LIDs listed; that do not 

appear to repeat projects listed in the International Stormwater BMP Database.  Of the five 

listed, four are pervious pavement.  The fifth is listed as a bioretention/rain garden in Tampa 

installed by the University of South Florida’s Department of Civil and Environmental 

Engineering recent Ph.D. graduate, Ryan Locicero. 

 The University of South Florida, Tampa campus, has ongoing LID research and outreach.  

The Patel Center for Global Sustainability installed a green roof and large cistern used to non-

potable water uses such as toilet flushing.  The Patel Center for Global Sustainability is currently 

working on planning tool software to assist in management decisions when transitioning from 

grey to green infrastructure.  In addition to traditional structural LID practices, there is a focus on 

Urban Forestry as well as non-structural practices. 

 The Department of Civil and Environmental Engineering is active in promoting LIDs for 

nutrient removal and providing public outreach.  Ryan Locicero, a recent doctoral graduate, has 
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installed eight bioretention systems in East Tampa (Locicero, 2015).  Seven of the bioretention 

systems were installed with students at local schools.  The last bioretention system was installed 

at a local leader’s residence in order to facilitate discussion within the community and address 

localized flooding issues on the property.  His dissertation focused on developing a Green 

Spaced Based Learning curriculum as well as bioretention native plant selection.  He has 

provided public outreach and education on environmentally sound stormwater management.   

 With a grant provided by the Tampa Bay Estuary Program, the Department of Civil and 

Environmental Engineering has installed two side-by-side bioretention cells in East Tampa.  The 

purpose of this research is to conduct field level investigations into pollutant load reduction 

provided by traditional bioretention and bioretention with an internal water storage zone.  The 

bioretention cells are installed at the Corporation to Develop Communities Audrey Spotford 

Youth and Family Center.  They will also serve as an educational tool for the community and 

youth who visit.  The Department is providing green construction training and environmental 

stewardship awareness to students who are seeking to obtain their General Equivalency Diploma 

through the Corporation to Develop Communities and the Tampa Vocational Institute.  To date, 

students have been instrumental in the installation of two bioretention systems.  They have also 

had the opportunity to develop critical thinking skills when conducting a site assessment, 

selecting materials, and staying within the budgeting requirements.  

 The American Society of Landscape Architects website provides several Florida projects 

that have incorporated LID into the site design.  All projects listed contain special features and 

vary from site to site; however, the implementation of LID is a common thread.  Each case study 

submits the name and location of the project, the project description, LID design features, costs, 
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and community benefits.  A summary of each project with LIDs installed is provided in Table 

2.4. 

Table 2.4 Low Impact Development Practices Showcased by the American Society of 
Landscape Architects (ASLA, 2015) 
 

Project 
Name 

Location Project 
Description 

Design 
Features 

Regulatory 
Environ-

ment 

Cost Impact 
for 

Conservation 

Performance 
Measures 

Awards 

Naples 
Botanical 
Garden 

Naples Stormwater 
discharges out 
pipe into River of 
Grass graded to 
preserve natural 
flow path 

Bioretention 
Rain garden 
Bioswale 

Supportive  Higher than 
conventional but 
long term benefits 
were a major 
consideration 

River of Grass is 
at the core of the 
botanical 
gardens 

Yes (x 4) 

Tampa Bay 
Office Park 
Waterscape 

Tampa Create prestigious 
office complex 
through 
preservation and 
restoration of 
wetlands 

Bioretention 
Porous pavers 
Curb cuts 

Supportive  10% or greater 
savings over 
conventional; 
Significantly 
reduced 
construction and 
operation & 
maintenance costs 

Initially used as 
a model 
stormwater 
management site 
by FDEP 

Yes (x 4) 

Hillsborough 
Community 

College – 
Southshore 

Ruskin Parking lot fitted 
with bioswale, 
cistern for toilet 
flushing & 
irrigation 

Bioretention 
Rain garden 
Bioswale 
Cistern 

Indifferent Slight increase in 
project cost 

Maximized 
RWH and 
stormwater 
treatment 

Yes (x 1) 

Florida Civil 
Water Center 

Jacksonville New construction 
to include green 
technologies and 
LID 

Bioretention 
Rain garden 
Bioswale 
Green roof 

Supportive Significantly 
reduced cost; 10% 
or greater savings 

Promotion of 
cultural, 
heritage, and 
nature tourism 

Yes (x 1) 

Florida 
Aquarium 

Tampa Parking lot runoff 
used in treatment 
train approach 

Rain garden 
Bioswale 
Pond 

Indifferent  Saved money by 
reducing curbing 
and pipes 

Public education Yes (x 4) 

Magdalene 
Reserve 

Tampa Reduced clearing 
and grading, 
hybrid wet and 
dry stormwater 
management 

Bioretention 
Bioswale 
Downspout 
removal 
Preservation 
of native soils 
and vegetation 

Supportive  Lot by lot grading 
more expensive; 
due to design, 2 
more lots were 
added which 
resulted in a net 
reduction in cost 

By preserving 
native soils and 
vegetation, 
infiltration is 
increased 
resulting in 
terminal pond 
rarely 
discharging 

Yes (x 5) 

 
 There are a number of “green” communities within Southwest Florida.  Though direct 

implementation of LIDs is not always evident, the concept and design phase utilized the initial 

evaluation of site characteristics, retention of natural features, and preservation of open space, 

which is the first step in LID implementation.  The Florida Green Building Coalition has 

certified four communities and one golf course within Southwest Florida (Florida Green 
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Building Coalition, 2015).  These subdivision and golf course development projects are 

Harmony, located in Central Florida; FishHawk Ranch, located in Lithia; Lakewood Ranch, 

located in Sarasota; Glen Cairn Cottages, located in Dunedin; and the Venetian Golf & River 

Club, located in Venice.  These projects received points for one or more of the following 

practices: developing a management plan for preserved, created or restored wetlands/uplands, 

conducting a vegetation and tree, topographical, soil, and wildlife survey prior to design, 

conservation areas and nature parks, maintenance or creation of wildlife corridors, preservation 

of upland buffers to enhance preserved wetlands, environmental education signs, and irrigation 

supply is from stormwater or reuse water. 

 River Forest, located in Manatee County, and Encore!, located in downtown Tampa, are 

two master planned communities that are executing LID practices, though neither is green 

certified.  River forest is a neighborhood where the homes are intertwined with the natural 

landscape and all land is considered a conservation area.  Roads were designed around existing 

trees and are narrow to reduce impervious area.  Stormwater is collected in 21 vegetated basins 

and vegetated swales to mimic pre-development hydrology.  Additionally, the natural grade was 

preserved to ensure existing pine flatwoods and their ecosystem are allowed to thrive amongst 

the housing units (Center for Urban & Environmental Solutions, 2007).  Encore! is a 40-acre 

mixed-use, master-planned community.  The builders are seeking LEED Neighborhood 

Development certification.  Encore! will utilize captured stormwater that is stored in an 

underground vault and use it for irrigation of native landscaping (Encore!, 2015). 

2.6 Barriers to LID Implementation 

 General themes of barriers to LID implementation are common across the U.S. including 

funding issues, lack of political leadership/support, resistance to change, conflicting regulations, 
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the need of technical training, overcoming the concept of being considered a new stormwater 

practice, cost, and operation and maintenance (EPA, 2011).  These barriers are so common that 

the EPA has created a series of “Barrier Buster” fact sheets, which aim to explain LID in clear 

terms and provide examples of how the particular barrier was dealt with successfully.  Eight fact 

sheets have been created primarily for state and local decision makers who might be considering 

adoption of LID.  The fact sheet summaries challenge the perception that LID isn't worthwhile, 

provide general background information that outlines hydrologic and economic benefits provided 

by LID, and addresses the perception that LID is too expensive, unattractive, that LID doesn't 

work, or is too difficult or costly to maintain (EPAb, 2014). 

 As recently as 2011, the Water Environment Federation (WEF) met with the EPA to 

discuss barriers to LID/GI implementation and followed up with a memo to the EPA.  The Water 

Environment Federation provided the EPA their perspective on overcoming implementation 

obstacles and possible solutions.  The obstacles and possible solutions are presented in Table 2.5. 

Table 2.5 Water Environment Federation Barriers to LID/GI Implementation and 
Solutions (WEF, 2011). 

Barrier Possible Solution 
Funding and cost of implementation Incentives to incorporate LID/GI in development or redevelopment 

 
Paradigm shift of calculating cost and focusing on the Triple Bottom 
Line benefits, which are people, planet, and prosperity 

Regulatory impediments Permitting and enforcement agencies working together at all levels of 
government 
 
Encourage flexibility in permitting in recognition of the variable 
nature of LID/GI 

Lack of LID/GI acceptance by 
municipalities and stormwater 
ordinances not addressing or 

inadvertently discouraging LID/GI use 

Identifying early adopters and show casing their work 
 
Education of local leaders 
 
Integrate LID/GI into stormwater regulations and encouraging 
regionally adapted Standards of Practice 

Transitioning from grey to green 
infrastructure 

Increasing funding for local education campaigns 
 
Developing training materials illustrating inter-agency coordination 
efforts by early adopters 
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Table 2.5 (continued) 
Barrier Possible Solution 

Transitioning from grey to green infrastructure  
Encouraging LID/GI retrofits when replacing or 
repairing grey infrastructure 

Long-term maintenance Education of private property owners or ordinances to 
enforce poorly maintained practices 

Design and construction hurdles associated with local 
climate, dominant soils, groundwater levels, and other 

site-specific parameters 

Development of practitioner-level guidance materials 
 
Regionally appropriate boilerplate codes or ordinances 
that can serve as a launching point for communities 

 
 In 2009, the University of Florida Program for Resource Efficient Communities (PREC), 

in conjunction with the St. Johns River Water Management District (SJRWMD), conducted four 

regional LID workshops for practitioners.  At each of the workshops, attendees were asked to 

participate in an exercise identifying barriers to LID implementation and to rank them in order of 

importance.  Presented in Table 2.6, are side-by-side comparisons of Florida’s obstacles to 

increasing LID based on the SJRWMD and PREC study and four case studies of barriers to 

implementation, how they have been overcome, or how they are being addressed.  Regions 

represented in the table are the State of Washington, Puget Sound, the State of Utah, and the 

State of Colorado.  Each region listed faced some, or all, of the same obstacles to increasing LID 

execution as Florida.  

Table 2.6 Comparison of Florida’s Barriers to LID Implementation with Other U.S. 
Regions (adapted from FWEA & AWRA FL, 2011; Doberstein, Kirschbaum, & Lancaster, 
2010; Wulkan, 2008; Burian, et al., 2008; Earles, et al., 2009) 
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Insufficient LID design  
and approval criteria 

 Emphasis of volume 
reduction in SWM manual 

LID design guidelines exist; 
Updating manual to address 
unintended restrictions; In-
depth regional training to 
disseminate information 
until updated LID manual 
issued; Rule of thumb sizing 
allowed on small sites 

LID manual developed to 
ensure consistency with 
SWM manual 

Lack of public awareness 
and acceptance 

 Municipalities to take the lead 
on LID implementation  

 Conducted workshops, held 
regional training sessions 

 
 



42 

Table 2.6 (Continued) 
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Lack of public awareness 
and acceptance 

   provided educational 
material on local pilot studies 

Uncertainty regarding 
cost/benefits 

 LID pilot studies in Rocky 
Mountain region 

LID design and performance 
rapidly evolving; reflected in 
region design guidelines. 
Education provided to shift 
mindset ‘traditional’ is 
always right 

 

Conflicting regulations 
between agencies 

 Improved regional guidance, 
better coordination between 
engineering, planning, parks, 
etc. 
Consider applying for a 
variance if necessary 

LID design guidelines exist; 
Updating manual to address 
unintended restrictions. 

Water Quality Plan directed 
120+ cities and counties to 
adopt LID friendly 
ordinances. 
Assistance provided to 
update ordinances if 
managers and elected 
officials demonstrated 
commitment. 

Lagging framework for 
long-term maintenance  
and operation 

 LID pilot studies in Rocky 
Mountain region – including 
long-term maintenance and 
operation 

  

Lack of political 
will/overcoming  
status quo 

 Municipalities to take the lead 
on LID implementation  

 Water Quality Plan directed 
120+ cities and counties to 
adopt LID friendly 
ordinances 

Lack of qualified experts 
with appropriate training 

University of Utah 
offering classes to 
students on LID site 
design and controls. 
Bioregional Planning now 
a graduate degree 

Expanded training courses 
through municipalities and 
professional organizations 

 Coordinated financial and 
technical support for regional 
workshops.  
University of Washington’s 
Professional Engineering 
Programs and Extension 
Specialists conduct biannual 
LID training  

Lack of research, 
demonstration projects 

Future development on 
the aquifer recharge area 
of Salt Lake Valley will 
have infiltration-based 
LIDs to promote recharge 
lost from development 

LID pilot studies in Rocky 
Mountain region 

 Numerous LID projects 
showcased in local 
publications. 
 

Lack of collaboration 
among stakeholders, i.e. 
inter-agency and general 
public 

 Evaluation of ordinances 
where LID has been more 
widely adopted 
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CHAPTER 3: RAINWATER HARVESTING AS A LID PRACTICE 

 Rainwater harvesting (RWH) is rarely promoted as its own initiative, but instead is 

viewed as part of GI, stormwater management, LID, water conservation, and drought 

management goals.  Rainwater harvesting consists of using either rain barrels or cisterns to 

capture impervious runoff, generally from roofs, and storing it for later use.  Rainwater 

harvesting is not a new technology and is a relatively simplistic, low technology in design 

(Briggs & Reidy, 2010) and has been documented in Jordan dating back to 3,000 BC (Jones, 

Hunt, & Wright, 2009).   

 RWH is considered the first step in implementing greener stormwater management, 

reduction in potable water demand for non-potable uses and sustainable living (Gold, et al., 

2010).  It is promoted as a LID practice due to its ability to provide decentralization of 

stormwater management and water supply simultaneously (Steffen, et al., 2013).  Harvested 

rainwater can be used for irrigation, toilet flushing, cement mixing, outdoor water features, 

cooling towers, storage of water for fire suppression, building power washing, street sweeping, 

vehicle washing, or flushing kennels at animal shelters (DeBusk, Wright, & Hunt, 2010; Forasté 

& Hirshman, 2010; Jones, Hunt, & Wright, 2009; Gold, et al., 2010).     

 Significant environmental benefits are associated with widespread implementation of 

RWH.  The positive impacts of RWH include stormwater management, pollution reduction, 

decrease water treatment needs, provide supplemental water supply, reduce demand on potable 

water resources, reduce energy consumption for water treatment and transport, functions as an 
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educational tool, and resiliency in emergency preparedness (Briggs & Reidy, 2010)(Gold, et al., 

2010).   

3.1 Rainwater Harvesting Design Considerations 

 Rainwater harvesting as a method of stormwater management LID practice is a function 

of maximizing captured rainwater, whether it’s a household level rain barrel or a commercial 

scale cistern.  Rain barrels are typically implemented in one or more barrels with a volume of 

approximately 55-gallons, where cisterns start at hundreds of gallons.  Year-round and 

continuous utilization is key to functionality through either indoor use, outdoor use, and/or use 

through a secondary runoff reduction infiltration practice (Forasté & Hirshman, 2010).  The 

harvested rainwater must be utilized as much as possible between storm events to be a viable 

stormwater management solution (Jones, Hunt, & Wright, 2009).   

Rain barrel performance is a function of size (Steffen, et al., 2013).  Rain barrels should 

be emptied onto lawns and gardens by homeowners so it can function as a stormwater control 

measure for the next rain event.  Without this important step, a rain barrel overfills and acts a 

disconnected downspout.  Homeowners have shown modest satisfaction rates with rain barrels as 

a result of needing to empty or utilizing the water after a significant rainfall event.  Having 

another asset that takes advantage of the harvested rainwater yields to increased homeowner rain 

barrel maintenance (Litofsky & Jennings, 2014). 

 When included as part of the watershed management plan, RWH has the ability to reduce 

stormwater pollution and provide relief on potable water demands by meeting the non-potable 

needs of residential and commercial establishments.  Watershed management plans are 

considered responsible plans when communities are required to conserve and protect the quality 

of their water resources.  A detailed water balance must be calculated and maintained in an effort 
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to take into account all inputs into the system such as precipitation, runoff, and irrigation as well 

as withdrawals from the system including outflow, infiltration, and discharge on both the site and 

watershed scale (Gold, et al., 2010). 

 Effective RWH design strategies include consideration of site conditions, end use, and 

physical feasibility.  Forasté and Hirshman (2010) reviewed the physical feasibility and site 

conditions required for effective implementation of RWH strategies.  The necessary design 

considerations include available space, existing site constraints, building or utility setbacks, site 

topography as it pertains to roof drain slopes, elevation changes in system components, inlet and 

outlet orifice inverts, and available head as it relates to pumping, locating the cistern, and end 

uses.  Briggs (2010) stated that a cistern’s usable volume, catchment area type, and areal extents 

are the crucial geometric parameters for design.  The Cistern Design Spreadsheet was developed 

to assist designers in proper sizing of RWH systems in the State of Virginia. Additionally, 

Virginia’s guidelines for tank sizing include incremental volumes for stormwater management, 

such as low water cut off, treatment volume, channel and flood protection volume, and freeboard 

and overflow volume (Forasté & Hirshman, 2010).   

 The science and engineering of sizing RWH systems is fundamentally important to its 

long-term success and viability (Briggs & Reidy, 2010).  For RWH to be an effective stormwater 

management tool, it must control runoff volume and peak discharge (Jennings, et al., 2013).  

Cistern size is often chosen arbitrarily, which can lead to under-sizing or over-sizing (Briggs & 

Reidy, 2010).  Jensen et al. (2010) recommend the four primary elements of rainwater harvesting 

systems are collection area, conveyance, storage, and end use.  According to Briggs and Reidy 

(2010), RWH design decisions should include ultimate end use as a function of the project 



46 

objectives, pattern and magnitude of harvested supply compared to demand, treatment 

requirements, project geometry, and client and end user preferences and budget. 

 Often RWH is promoted as an alternative water source instead of a stormwater 

management practice; as a result, designer, planners, and reviewers do not have a common 

language regarding design features and applicability resulting in systems being typically 

designed in isolation from the site’s stormwater management regime.  A consistent method of 

evaluation is needed among designers and plan reviewers to quantify benefits relating site 

conditions, water usage, and stormwater management.  Without a detailed design guideline, 

similar to what is available for most BMPS in most state stormwater management manuals, an 

information void exists and RWH adoption as a BMP could be limited (Forasté & Hirshman, 

2010). 

3.2 Policy Surrounding RWH 

Gold et al. (2010) reviewed RWH policies on both the municipal and federal levels.  As a 

result of stormwater management concerns, water supply needs, sustainable design, and drought 

management, RWH policies are on the rise with municipalities having the most progressive 

policies regarding RWH.  Federal policies regarding RWH are targeted more towards GI and 

stormwater management.  There are four Federal policy or incentive programs for RWH: Clean 

Water State Revolving Fund (1987), Energy Independence and Security Act of 2007, America 

Recovery and Reinvestment Act (2009), and Water Use Efficiency and Conservation Research 

Act (2009).  Nineteen states have either local or state implementation of rainwater harvesting; of 

those nineteen, ten states have RWH as a state law, and nine provide some sort of financial 

incentive for the implementation of RWH.  Most states and municipalities view cisterns as the 

most beneficial form of capturing rainwater in meeting water supply demands and reducing 



47 

stormwater runoff with the top three motivators being water supply demands and conservation, 

stormwater management, and grassroots and public support. 

3.3 Rainwater Harvesting Case Studies 

 Jones (2009) monitored five RWH systems in North Carolina, measuring cistern water 

levels and rainfall.  The results showed rainwater was typically under utilized.  Rainwater 

harvesting was most utilized at locations where it was used strictly used for toilet flushing.  The 

other locations had access to both potable water and harvested rainwater; when given a choice, 

employees chose potable water for a variety of reasons, including ease of use and health 

concerns associated with lack of education.  DeBusk (2010) installed cisterns at three distinct 

locations with different uses.  The cistern at the Craven County Animal Shelter was to be utilized 

flushing soiled kennels.  They found the shelter employees often left the water running once the 

switch was turned on for water access; therefore, a timer was installed.   

 Talebi and Pitt (2012) studied the use of rain barrels for landscape irrigation in low and 

medium density residential areas within six U.S. rain zones.  Birmingham, Alabama was the rain 

zone for the Southeast United States.  The study evaluated proper sizing needed for optimal, 

beneficial stormwater use.  WinSLAMM continuous simulations were utilized for monthly 

rainfall infiltration calculations.  Additionally, roof runoff and water tank storage production 

functions were calculated for each site.  The Southeast region had moderate levels of maximum 

control as a result of greater rainfall.  For all areas, the smallest roof runoff control assumed the 

residence would have about five rain barrels per 1000 ft2 of roof; the largest would have two 6’ 

high by 10’ diameter tanks per 1000 ft2 resulting in an efficiency for the Southeast US of 34% 

and 42%, respectively. 
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   Jensen et al. (2010) provided a regional US comparison of RWH performance for both 

water supply and stormwater management.  A water budget analysis using RWHTools was 

utilized to calculate mass balance using historical precipitation data and total water use, both 

indoor and outdoor.  Tampa, Florida was the city analyzed for the Southeast US.  To achieve 

approximately 70% catchment efficiency in Tampa, a homeowner would need approximately 

fourteen 55-gallon rain barrels or a 750-gallon cistern.  At this size, for total indoor and outdoor 

use, a water capture and use efficiency of about 25% is achieved.  When harvested rainwater was 

for outdoor use only, it yielded a slightly lower capture and use efficiency of approximately 

20%.  The authors concluded that precipitation and water demand patterns should be evaluated 

jointly instead of solely on climate in determining potential RWH benefits.  This study showed 

water supply and stormwater management are not competing objectives in urban water 

management.  Additionally, optimal stormwater management is gained by increasing cistern size. 

 Steffen et al. (2013) studied residential RWH for 23 cities in seven climatic regions to 

quantify water supply and runoff reduction.  A daily time step of the water balance was used to 

determine water-saving efficiency.  SWMM was utilized to analyze RWH with each cistern 

represented as a storage unit within the modeling software.  For this study, it was assumed that 

50% of the rooftop drained to the RWH system.  For the Southeast US, including Tampa and 

Miami, for a 5678-liter (1500-gallon) cistern, the water-saving efficiency for indoor and outdoor 

non-potable water use was 36%.  If the non-potable water harvested was strictly used for indoor 

use, the water-saving efficiency increased to 95%.  For a single 50-gallon rain barrel that serves 

outdoor use only, the water-saving efficiency is 10% for Tampa, Florida.  For the Southeast 

regional area, if a single 50-gallon rain barrel was implemented on a neighborhood scale, the 

runoff reduction is a meager 4% whereas if a 500-gallon cistern were implemented on the 
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neighborhood scale, the runoff reduction would increase to 12%.  The RWH potential for water 

supply and stormwater management depends on factors such as precipitation, size, and water 

consumption pattern.  For the Southeast US, the higher rainfall increases water-saving efficiency 

however; it also has a lower stormwater management potential.  

 Jennings et al. (2013) studied rain barrel implementation along with urban gardens in 

Ohio.  For any LID practice to be successful on the watershed level, a high level of community 

participation is required.  The study found rain barrels require significant homeowner 

participation to be effective; however, some homeowners consider them unsightly.  Urban 

gardens were implemented to increase rain barrel performance and community acceptance.  For 

this case study, a roof collection area of 500 ft2 was utilized for the rain barrel, the rain barrel 

size was 50 gallons, and the urban garden was 150 ft2.  Any rainfall in excess of 0.17 inches 

would cause the rain barrel to overflow, even if it was empty at the beginning of the rainfall 

event.  Using 11 years of rainfall data and 1-, 2-, and 3-day irrigation frequencies for the urban 

garden, roof service-area runoff reductions were calculated for the growing season, for the entire 

year, and annual whole-roof runoff reductions.  For the growing season and the irrigation 

frequencies listed, the runoff reduction was 21.7, 14.7, and 9.8%, respectively.  For the entire 

year, the roof service-area reduction and the three irrigation schedules were 12.5, 8.5, and 5.7%, 

respectively.  The total annual whole roof runoff reductions and the three irrigation schedules 

were 3.1, 2.1, and 1.4%, respectively.  The authors reported these were somewhat unexpected 

results, as most rain barrel advocates assume rain barrels are more effective than what the study 

revealed. 

 Jennings et al. (2013) determined RWH performance could be improved by increasing 

roof service area, rain barrel capacity, or garden size.  All three options face obstacles; increasing 
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roof service area would require an increase rain barrel size and the redirection of several 

downspouts, increasing rain barrel capacity would increase homeowner resistance, and 

increasing garden size is limited by lot size and homeowner commitment to gardening.  Rain 

barrels support a beneficial use of the captured stormwater for urban gardening, which adds 

additional merit, but reductions in stormwater runoff would be modest.  Evaluating the degree to 

which reductions of this magnitude would have a beneficial hydrologic and aquatic ecosystem 

effects should be addressed before committing to this management strategy. 

 Litofsky et al. (2014) elaborated on Jennings et al. (2013) study of rain barrels and urban 

garden usage.  Their rain barrel size was set at 64-gallons to capture 500 ft2 of rooftop and 

irrigate a 150 ft2 garden.  Their study included results for Miami and Tallahassee, Florida 

regarding service area runoff reduction and irrigation demand satisfied.  Rainfall patterns 

determine how successful rain barrels can be in providing runoff reduction and the ability to 

meet irrigation demand.  For Miami, service area runoff reduction was 9.1% and irrigation 

demand was 47.8%.  For Tallahassee, service area runoff reduction was 7.5% and irrigation 

demand 50.4%.  To put these numbers in perspective with other states, Arizona had 

approximately a 45% runoff reduction with the same study parameters.  Vermont had 

approximately 80% of its irrigation demand satisfied with the same study parameters.  The 

authors concluded that the rain barrel-urban garden strategy would have maximum stormwater 

reduction benefit in areas with the lowest annual precipitation.  Nonetheless, they still encourage 

gardeners to take advantage of harvested rainwater to supplement irrigation needs. 

 Cheveney & Buchberger (2013) modeled GI on the watershed level for the Mill Creek 

Watershed located in the metropolitan area of Cincinnati, Ohio.  One type of GI modeled was 

rain barrels; all residential, commercial, and industrial properties within the Mill Creek 
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Watershed were assumed to have a 55-gallon rain barrel.  After running Aquacycle, it was found 

that catchment scale implementation of rain barrels did not significantly impact the water 

balance.  The widespread use of rain barrels yielded a 0.6% reduction in average annual drinking 

water inflow and the average annual wastewater and streamflow were reduced by 0.2%.  
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CHAPTER 4: INFILTRATION-BASED LID PRACTICES 

 When designed properly, infiltration-based LIDs have the ability to mitigate groundwater 

disruptions that result from urbanization, minimize receiving water body hydrology, and reduce 

pollution discharges to surface waters (Duchene, McBean, & Thomas, 1994).  A variety of low 

cost, infiltration-based designs such as rain gardens, swales, drywells, infiltration trenches, and 

bioretention systems are promoted LID practices.  Infiltration-based LID practices can be an 

effective tool in maintaining pre-development site conditions as they fulfill multiple aspects in 

restoring site hydrology such as storing, detaining, evaporating, and infiltrating stormwater 

runoff.  While all surfaces evaporate, perhaps what drives the aesthetics and subsequent 

implementation rates of various infiltration-based LID practices is their evapotranspiration and 

associated vegetation.  Rain gardens, bioretention systems, and swales contain the most 

vegetation for evapotranspiration.  Drywells are generally covered by grass and have a minor 

evapotranspiration component; however, they do not have the strong aesthetic component 

associated with rain gardens and bioretention areas.  A grassed buffer generally surrounds 

infiltration trenches and the filtering surface area tends to be exposed.  

 The National LID Manual lists the following infiltration-based practices: bioretention, 

drywells, filter/buffer strips, swales, and infiltration trenches.  The Manual provides details for 

each LID practice regarding site constraints, hydrologic function ranking, and design 

components.  Rain gardens are not specifically addressed in the National LID Manual however, 

The Center for Watershed Protection (CWP) has included rain gardens in their urban watershed 

manual (CWPa, 2007).  In the urban watershed manual appendices, the CWP describes the 
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difference between a rain garden and a bioretention system.  A rain garden is defined as a 

shallow bioretention area with relatively permeable soils that do not possess underdrains and are 

typically installed with volunteer labor.  Examples of rain gardens with volunteer labor include 

homeowner installation or a demonstration site (CWPb, 2007).  

 In the National LID Manual, it is stated that thinking small is the key to concept in LID 

and is a change in traditional stormwater management perspective.  Low Impact Development 

practices can be installed in small sub-catchments, on residential lots, and in common areas to 

allow for the distributed control of stormwater throughout the entire site.  This affords the 

opportunity to maintain the site’s important hydrologic functions such as infiltration, 

depressional storage, interception, and a reduction in the time of concentration.  Runoff is 

directly related to rainfall abstraction of the aforementioned hydrologic functions therefore, 

trying to capture these natural hydrologic functions through end-of-pipe stormwater management 

would be a difficult task.  By placing LIDs as closely as possible to the source, compensation for 

development disturbances of these hydrologic functions is provided (PG County, MD, 1999). 

 When proper siting requirements are met, all of the infiltration-based LID practices have 

the potential to improve the hydrology of the developed site.  Proper siting begins at the initial 

stages of land development or re-development.  It includes reviewing the natural landscape 

features of the proposed development or retrofits such as available space, soils, and slope.  Once 

these have been thoroughly reviewed, it is then possible to choose a LID practice, or practices, 

that suit the landscape.  All infiltration-based LID practices require some level of geotechnical 

investigation to ensure suitability.  Whether native soils or engineered soils are used, these 

practices can increase groundwater recharge, reduce runoff volumes, reduce thermal impacts on 

streams, and increase community aesthetics when vegetation is utilized.  For example, rain 
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gardens can infiltrate 30% more rainfall than a grassed lawn, bioretention can achieve a runoff 

reduction of 35 to 50%, and swales can reduce runoff volumes by 40% on average (CWPa, 2007) 

(CWPb, 2007).  These benefits are achievable when the generally accepted design guidelines are 

provided in Table 4.1.  These are National standards therefore; they should be considered a 

guideline and adapted accordingly to regional conditions.  In Florida, depending on the location 

of the development or retrofit site, the seasonal high water table can vary widely.  Additionally, 

the type of storms and antecedent moisture conditions should be included in the design 

considerations for each LID practice.  The following studies review the surface-groundwater 

interaction and the hydrology of bioretention, infiltration trenches, swales, and drywells. 

4.1 Infiltration-based LID Hydrology Case Studies 

4.1.1 Bioretention  

 Bioretention is a landscape feature for the treatment of stormwater runoff from new 

development and for retrofit sites.  Bioretention cells receive surface runoff into a shallow 

landscaped depression.  During rainfall events, runoff temporarily ponds a few inches above the 

top surface until it infiltrates through the soil or media.  If the infiltration capacity is not 

sufficient to empty in a reasonable time, an underdrain is installed.  Native soils can be used if 

the site has a highly permeable soil, a low groundwater table, and a low risk of groundwater 

contamination (CWPa, 2007).  An example of a bioretention cell is provided in Figure 4.1.  

 

 

 

 

 
Figure 4.1 Bioretention Plan and Section View (MDE, 2009)
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Figure 4.1 (continued)  

 
 Davis et al. (2012) reviewed the empirical nature of bioretention design that typically 

does not account for varying geologic and climate conditions.  Due to natural site conditions, 

such as geology and climate, bioretention hydrologic performance will vary from site to site and 

within a site for different rainfall events.  Bioretention has a finite capacity to mitigate runoff.  

They are typically designed for small storm events.  During large storm events, they overflow, 

discharge from the underdrain, or both.  If bioretention cells were designed with a higher storage 

volume, such as deeper media or larger surface area, they may provide better hydrologic 

performance in mitigating runoff and underdrain discharge. 

 In order to encapsulate the natural processes and features of bioretention cells, the authors 

derived a design equation based on soil properties and antecedent moisture conditions.  Native 

soils dictate percolation based on their hydraulic conductivity and hydraulic gradient.  Highly 

conductive soils surrounding the bioretention cell can increase the flow-through rate.  

Antecedent moisture conditions control the amount of pore space available for water storage in 

the bioretention cell.  If enough time has passed between storm events, the potential for water 

storage is greater.  If, however, the water in the bioretention cell has not percolated into the 
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Table 4.1 Generally Accepted Design Standards for Infiltration-based LID Practices 
(adapted from: CWP(2), 2007; PG County, MD, 1999) 
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Bioretention Min. width: 5-10 
ft; 

Min. length: 
10-20 ft; 

Size should be 5-
10% of contribut-
ing drainage area 

Infiltration rates: 
≥ 0.5 in./hr, no 

underdrain 
required; 

≤ 0.5 in./hr, 
underdrain 
required 

More a design 
consideration 

than a limitation 

2-4 ft 10 ft offset 
& locate down-

gradient of 
building 

foundation 

Min. depth: 
2-4 ft 

6-9 in. Native species; 
Typically min. 

of 3 species 

Required if 
anticipating heavy 
sediment loading 

Non-erosive 
velocities 

(≤ 0.5 ft/sec) 

Low 

Rain Garden 10-30% of 
rooftop area 

Should match 
those of bio-
retention but 

usually installed by 
homeowners 

Avoid steep 
slopes but more 

a design 
consideration 

than a limitation 

2-4 ft 10 ft offset 
& locate down-

gradient of 
building 

foundation 

Typically 6-
18 in. deep 

Not add-
ressed 

Native species; 
Typically min. 

of 3 species 

Not required Empty within 24 
hours 

Low 

Drywell Min. width:  
2-4 ft; 

Min. length: 
4-8 ft; 

500 ft2 of roof per 
drywell 

Infiltration rates: 
≥ 0.27 - 0.5 in./hr 

Avoid steep 
slopes but more 

a design 
consideration 

than a limitation 

2-4 ft 10 ft offset 
& locate down-

gradient of 
building 

foundation 

Min. depth: 
4-8 ft 

No ponding 
depth 

Typically 
covered by 

grass 

Not required Empty within 48 - 
72 hours 

Low 

Filter/ 
Buffer Strip 

Min. length:  
15-20 ft; 

Size should be 5-
15% of contribut-
ing drainage area 

No soils limitation 
but permeable soils 

preferred 

More a design 
consideration 

than a 
limitation; 

Usually 1% min. 
slope 

Generally not 
considered 
a constraint 

10 ft offset 
& locate down-

gradient of 
building 

foundation 

Not add-
ressed 

Not add-
ressed 

Typically 
covered by 

grass 

Typically is the 
pre-treatment 
method itself 

Used to control 
sheet flow only; 
Avoid erosive 

discharge velocities 

Low 

Swale - (grass, 
infiltration, 

wet) 

Bottom width:  
2-6 ft; 

Size should be 5-
15% of contribut-
ing drainage area 

Type of swale 
dictated by soil 

type; 
No soils limitation 
but permeable soils 

preferred 

3:1 sides slopes 
or flatter; 

Longitudinal 
slope min. 1% & 

6% max.; 
Avoid erosive 

discharge 
velocities 

Generally not 
considered 
a constraint 

10 ft offset 
& locate down-

gradient of 
building 

foundation 

Not add-
ressed 

Min. 4.0 in. 
for water 

quality treat-
ment; 

Can be up to 
12 in. in 

depth 

Native vegeta-
tion or grass 

Not addressed Manning’s n value 
changes with water 

depth; 
Trapezoid or 

parabola shape 
preferred; Channel 
length sufficient for 
10 minute residence 

time 

Low 

Infiltration 
Trench 

Min. width: 2-4 ft 
Min. length: 4-8 
ft; Size: 0-5% of 
contributing 
drainage area 

Infiltration rates: 
≥ 0.52 in./hr 

More a design 
consideration 

than a limitation 

2-4 ft 10 ft offset 
& locate down-

gradient of 
building 

foundation 

3–12 ft 
typical depth 

Not add-
ressed 

Not addressed Pre-treatment 
required for 
removal of 

sediment and 
debris 

Design should 
consider overflow 

path and avoid 
erosive discharge 

velocities 

Moderate to 
high 
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subsurface by gravity and another storm event arrives, the cell will most likely overflow through 

surface discharge or underdrain discharge.   

 Bioretention Abstraction Volume (BAV) is the amount of water captured from surface 

runoff that is evapotranspired or percolated.  BAV is also the amount of water that is not 

discharged to surface waters.  The authors present an equation to determine BAV based using the 

concepts of bowl and pore storage.  This equation can be applied regionally and used as a design 

guideline since it takes into account each site’s climate and soils conditions.  Using bowl 

volume, root zone volume of the media, the lower media storage volume, and soil characteristics, 

BAV equations were developed to represent average volume and volumes available during long 

and short antecedent moisture conditions, respectively.  The BAV equations for a bioretention 

cell without an underdrain were presented as: 

    BAVavg = Vb + RZMS(SAT – WP)      (1) 

where BAVavg is the average BAV, Vb is bowl volume, RZMS is the media storage volume in  

the root zone, SAT is saturated moisture content of the media (or soil), and WP is the plant 

wilting point of the soil.  Equation 2 would be utilized when the abstraction volume is highest.  

   BAVhighest = Vb + [RZMS(SAT – WP) + LMS(SAT – FC)   (2) 

where BAVhighest is the maximum BAV storage, Vb is bowl volume, RZMS is the media storage 

volume in the root zone, SAT is saturated moisture content of the media (or soil), WP is the plant 

wilting point of the soil, LMS is the lower media storage volume for native soils, and FC is the 

field capacity of the soil.  When only the bowl is available for storage, the least amount of 

capture is described in Equation 3. 

        BAVlow = Vb
      (3) 

where BAVlow is equal to the Bowl Volume (Vb).   
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 The BAV equations for a bioretention cell with an underdrain are defined as: 

   BAVavg_underdrain  = RZMS(SAT – WP) + LMS(SAT – FC)    (4) 

where BAVavg_underdrain is the average BAV storage, RZMS is the media storage volume in the 

root zone, SAT is saturated moisture content of the media (or soil), WP is the plant wilting point 

of the soil, LMS is the lower media storage volume, and FC is the field capacity of the soil. 

  BAVhighest_underdrain = Vb + [RZMS(SAT – WP) + LMS(SAT – FC)   (5) 

where BAVhighest_underdrain is the maximum BAV storage, Vb is bowl volume, RZMS is the media 

storage volume in the root zone, SAT is saturated moisture content of the media (or soil), WP is 

the plant wilting point of the soil, LMS is the lower media storage volume, and FC is the field 

capacity of the soil. 

      BAVlow_underdrain = RZMS(SAT – WP)     (6) 

where BAVlow_underdrain is the minimum BAV, RZMS is the media storage volume in the root 

zone, SAT is saturated moisture content of the media (or soil), and WP is the plant wilting point 

of the soil. 

 The authors state that these equations, when used in bioretention design, can have the 

greatest impact on volumetric management due to the moisture holding capacity of the media or 

soil, which is defined by water holding capacities of the media, media volume, and root depth.  

Field data from bioretention cells, in the Mid-Atlantic region and North Carolina, have agreed 

with the calculated BAV; therefore, it is possible to use these equations as a quantitative design 

tool for bioretention in Florida since the equations utilize soil moisture characteristics (Davis, et 

al., 2012).   

 Machusick and Traver (2009) evaluated stormwater infiltration on a shallow unconfined 

aquifer at a bioretention site located at Villanova University.  The site was a vegetated 
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bioretention traffic island on campus with approximately 0.53 hectares of contributing drainage 

area as well as 35% directly connected impervious area (DCIA).  The bioretention cell was 

designed to infiltrate the first 2.5 cm of precipitation and was a retrofit to an existing traffic 

island.  Four monitoring wells were located around the site one up gradient, one down gradient, 

and two adjacent to the traffic island.  The research focused on mounding since it can be 

detrimental in groundwater flow regimes, underground utilities, and building structures. 

 During the ten-month study period, approximately 79 cm of precipitation was recorded.  

For most storms, the precipitation was less than 2.5 cm.  It was reported the great majority of 

runoff was infiltrated on site however, during large, more intense storms the bioretention cell 

remained at capacity, which resulted in runoff rather than infiltration.  For storms less than 1.9 

cm, the infiltration rate was sufficient to avoid groundwater mounding.  For larger storms, 

infiltration occurred for long enough duration to cause increased groundwater elevation.  

Infiltration rate was found to be a factor in contributing to groundwater mounding as well as 

temperature.  Though mounding occurred, the researchers reported that the vadose zone had 

enough storage capacity to accommodate larger storms without negatively affecting the local 

subsurface (Machusick & Traver, 2009). 

 Braga and Fitsik (2008) assessed performance results, design information, and challenges 

for four bioretention cells and two rain gardens in six Massachusetts neighborhoods.  

Performance results were conducted after installation utilizing a double ring infiltrometer, while 

following protocols outlined in ASTM D3385-94.  Design information included media depth, use 

of geotextile fabric, and use of an underdrain.  The performance challenges faced by certain sites 

varied from compacted soils to heavy sediment loading.  These performance challenges were 

hindsight discoveries and provide information on lessons learned to avoid failure in future sites.  
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The results from this study are summarized in Table 4.2.  Though the study provided a review of 

these individual LID practices, it should be noted that these sites utilized other BMPs to improve 

water quality and water quantity.  These six locations included one or more of the following: 

downspout disconnection, vegetated swales, a constructed wetland, porous pavement, drywells, 

and maximizing open space. 

Table 4.2 Bioretention and Rain Garden Design Parameters, Performance, and Challenges 
in Six Massachusetts Neighborhoods (adapted from Braga & Fitsik, 2008) 
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Tyngsborough 2004 Bioretention 48 n/a Yes No 5.01 Performing as expected 
Littleton 2005 Rain garden 18 12 Yes No 3.82 Not addressed 
Wilmington 2006 Bioretention 18 18 Yes Yes 22.73 Performing as expected 

Bioretention 18 18 Yes Yes 21.94 Performing as expected 
Rain garden 18 12 Yes No 12.38 Performing as expected 

Wayland 2006 Bioretention 24 n/a Yes Yes 0.34 Underlying soils found 
compacted during 
construction 
Infiltration rates limited by 
native soils 

Ipswich 2006 Rain garden 18 n/a No No 0.63 Infiltration rates limited by 
native soils 

Lundenburg 2007 Bioretention 18 12 Yes Yes 3.30 Receives heavy sediment 
loading from roadside runoff 

Acton 2008 Bioretention 18 12 Yes No 17.63 Performing as expected 
 
 Wardynski and Hunt (2012) reviewed forty-three bioretention cells, in twelve regulatory 

districts, to evaluate performance while simultaneously comparing pre-2005 and current North 

Carolina’s state design requirements.  They reviewed and compared as-builts, existing soil 

conditions, and level of maintenance.  By ensuring as-builts were within acceptable tolerance of 

the original design dimensions; the bioretention cells should perform as expected.  Bioretention 

cell infiltration and water quality performance is directly dependent on the installed soil media.  

Additionally, executing a diligent inspection process during construction and implementing a 

post construction inspection program will dictate future performance of the bioretention cell is 
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functioning as anticipated.  Though the authors hypothesize the bioretention cells were still 

functioning, even if marginally, most were lacking in one or more evaluated parameter.  

 For the purposes of this study, the authors determined a bioretention cell was within 

design specification if the pond area surveyed was within 10% of the intended design.  Further 

cell categorization included moderately under/oversized if within 10-25% of the intended design, 

and severely under/oversized if the surveyed area was greater or less than 25% of the intended 

design.  When comparing the bioretention surveyed surface storage capacity to intended surface 

storage capacity, 35% were severely undersized, 17.5% were moderately undersized, 17.5% 

were within acceptable range, 10% were moderately oversized, and 20% were severely 

oversized.  The authors investigated further to determine the causes of numerous undersized 

bioretention cells.  It was revealed the undersized cell occurred in seven of the twelve regulatory 

jurisdictions.  Three of these seven jurisdictions do not have an annual inspection and 

maintenance program.  The correlation being that a lack of annual inspection and maintenance 

programs might also be an indicator of a lack of construction inspection(s) and/or inspection 

personnel. 

 A bioretention cell’s exisiting soil and media condition following long term use is an 

indicator of how well it is functioning.  For this North Carolina study, the bioretention media had 

two separate design requirements, pre-2005 and current specification.  The pre-2005 soil media 

recommendation stated that sand should be 43-50% of the mixture, fines can be <50% silt and 

<7% clay.  The current design standards, established in 2009, state that sands should be 85-88% 

of the mixture, fines can be 8-12%, and organic matter can be 3-5% of the mixture.  The 

permeabilty is the same under both design specifications, 1-6 inches per hour.  The average 

results of all bioretention soil particle size analysis showed 29% adequately met design 
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specifications, 37% contained too many fines, and 34% contained too much sand.  This study 

reports a decrease in the used of fines in bioretention cells from 2008-2010; this may have been a 

result of increased inspection, mainenance, and education.  The amount of fines found were a 

function of original soil media rather than incoming fines from the watershed.  Additionally, the 

study revealed the presense of hydric soil indicators in 2 cells, and mottling of soils in 22% of 

cells, which may indicate the cells were not draining efficiently.   

 A visual inspection was conducted on the forty-three bioretention cells to assess the level 

of maintenance as well as to determine common maintenance issues.  Over 50% of the cells were 

in need of some level of maintenance.  Sediment deposition was the largest individual 

maintenance issue, with 44% of the cells exhibiting detrimental sedimentation which lead to 

clogging and drainage inefficiency.  Internal erosion was the next most dertrimental maintenance 

issue, with 30% exhibiting erosion at the inlet.  The last three maintenance issue categories 

represented the smallest portion of issues.  These included, for a combined total of 17%, no 

plants present, wetland plants present outside the forebay, and overgrown or limited access.  The 

authors noted that some of the causes of maintenance issues, such as erosion, occurred where 

there was no forebay and no regular inspection to ensure sedimentation issues are identified early 

and dealt with in a timely manner (Wardynski & Hunt, 2012). 

4.1.2 Infiltration Trench 

 Infiltration trenches function similarly to bioretention in that they receive surface runoff 

and temporarily store runoff until it is infiltrated into surrounding soils.  It is generally 

considered a good practice to have some sort of pre-treament of runoff before entering the trench 

as they can clog, and subsequently fail, due to heavy sediment loading and debris.  If favorable 

conditions are present, infiltration trenches can reduce runoff volumes, improve water quality, 
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and increase groundwater recharge (CWPa, 2007).  An example of an infiltration trench is 

provided in Figure 4.2 (MDE, 2009). 

 

 
Figure 4.2 Infiltration Trench Plan and Section View (MDE, 2009) 

 
 Duchene, et al (1994) used two-dimensional, finite element method modeling of 

infiltration trenches and compared it to the infiltration rate estimated by Darcy’s law.  The 

infiltration rates determined by Darcy’s law were considered conservate to the authors compared 

to finite method modeling.  The study compared sandy soils and silt soils, trapezoidal and 
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rectangular geometries, the impact of clogging on the system, and infiltration to surrounding 

soils. 

 Latoral and horizontal infiltration rates into the surrounding soil from the infiltration 

trench are dependent on factors such as water depth in the trench, saturated hydraulic 

conductivity of the surrounding soil, distance of the water table to the bottom of the trench, and 

antecedent moisture conditions.  This study compared infiltration rates using both Darcy’s law 

and the modeling software 2DUSAT, which uses a modified version of Richard’s equation.  The 

modeling parameters for this case study were both sand and loam soils, 1m wide by 1m deep and 

2m wide by 1m deep trench geometries, the soil boundaries around the trench was 10 meters 

wide by 5 meters deep, depth of water varied from 0.25, 0.5, and 1.0 meters, and depth to water 

table of 3 meters. 

 When comparing the 1m by 1m infiltration rates to the 2m by 1m rates, the 1m by 1m 

trench infiltrated faster, since lateral infiltration decreases and trench width increases.  Modeled 

infiltration rates for the 1m by 1m trench were between 1.25 and 3.5 times greater than the 2m by 

1m trench for the ranging depth of water head.  Reviewing the 2m depth to water table results for 

bottom and side percentage of infiltration for a sandy soil, which is a closer approximation for 

Southwest Florida conditions than 3m depth to water table, the corresponding percentage of 

bottom infiltration decreases with increasing water head in the trench and the percentage of 

lateral infiltration increases with water head in the trench.  These values ranged from 77-58% for 

bottom infiltration and increasing head and from 23-42% for lateral infiltration and increasing 

head.  The loam soil showed the same bottom and lateral infiltration characteristics for this 

portion of the study.   
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 The study also compared a 2m and 3m depth to water table on infiltration rates.  The 

greater the distance to water table, the higher infiltration rate.  The greater the difference between 

the bottom of the trench to the water table, the greater the negative pressure, which draws water 

down.  Additionally, the greater the distance to the water table, the less mounding and lateral 

spreading of the mound.  When comparing the 2m depth to water table to the 3m depth to water 

table results, the sandy soil infiltration rate decreased by 20%, while the loam soil decreased by 

8%. 

 The authors modeled the effects of clogging and antecedent mositure conditions on 

bottom and lateral infiltration rates.  A 5 cm thick layer of sandy clay loam and clay were used to 

represent fines that can accumulate and clog infiltration treches when no sedimentation pre-

treatment is in place.  No matter the type of fines in the bottom of the trench and the head in the 

trench, the overall and bottom infiltration was reduced.  When head in the trench was at its 

lowest, 0.25 m, infiltration reduction was at its highest value however, when trench head was the 

highest, 1.0 m, overall infiltration, bottom infiltration, and lateral infiltration increased.  

Antecedent moisture conditions also impact infiltration rates.  Drier soils have the ability to 

absorb more water than soils that are already moist.  The overall reduction on infiltration rates 

was approximately 10% compared to drier soil.  Additionally, as the head increased in the trench, 

the wetter soil steadily decreased infiltration capacity (Duchene, McBean, & Thomas, 1994). 

 Chahar et al. (2012) evaluated the engineering design aspects of infiltration trenches.  

The authors provide a numerical solution in quantifying infiltration rate and recharge of 

groundwater as well as the drain time of the trench.  Infiltration rates of a trench are 

characterized by physical parameters such as trench dimensions, depth of water in the trench, 

hydraulic conductivity of the media, depth of the drainage layer, and depth to ground water table.  
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Trench empyting time is a critical design consideration.  If the time between storms is not greater 

than emptying time, the infiltration trench outflow should be directed to another stormwater 

facility. 

 The modeling program, MATLAB 2010, was utilized to evaluate when the infiltration 

trench first starts to empty.  For modeling purposes, the authors assumed the soil surrounding the 

trenches was saturated.  During initial draw down in the trenches, the media is unsaturated and 

infiltration rates are high.  As the draw down continues, the surrounding soil becomes more 

saturated and infiltration rates decrease exponentially with time.  When antecedent moisture 

conditions are high, the saturation of surrounding soil and infiltration rates are faster.  The 

authors suggest saturated seepage rates should be utilized rather than infiltration rates of the 

surface material as using the latter will cause an underestimation of infiltration rates and an 

overestimation of draw down time within the trench. 

 The authors worked with the City of Lyon, France to help the city evaluate alternative 

stormwater management practices such as infiltration trenches.  Both rectangle and trapezoidal 

infiltration trenches had their performance evaluated.  When the starting water depth of both 

geometries was 0.30m, they both had similar emptying times of approximately 40 minutes.  As 

the depth of water increased incrementally to 0.9m, the rectangular trench emptied more quickly 

than the trapedzoidal trench by an average of 20 minutes for each discrete water depth.  

Rectanglular trenches seem to be easier to construct and have a slightly higher efficiency 

however, in Southwest Florida, trapezoidal infiltration trenches seem best suited as sandy soils 

are less cohesive than other soil classifications (Chahar, Graillot, & Guar, 2012). 

 Currier et al. (2001) examined siting requirements and post-construction insights of two 

infiltration trenches installed in California.  For both infiltration trenches studies, the drainage 
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area was 1.7 acres (0.69 ha), with one being located in Los Angeles County and the other in San 

Diego County.  Siting infiltration-based LIDs requires accurate knowledge of the site’s soil type, 

seasonally high ground water table, and field permeability.  Post-construction insights include 

infiltration rate, groundwater elevation, and soil characterization discrepencies. 

 Eight sites had a geotechnical investigation to determine suitablity for infiltration trench 

installation; only the Los Angeles and San Diego County sites marginally met selection criteria.  

The measured permeability was 40 and 31 inches per hour, respectively, and groundwater 

separation was 2-plus feet with the geotechnical engineer reporting no groundwater was 

encountered during boring.  Both sites had a grass filter strip as a pre-treatment measure before 

stormwater runoff entered the trenches as well as both being designed to have an emptying time 

of 72 hours. 

 Of the two infiltration trench sites, the Los Angeles County trench is functioning as 

designed.  The post-construction investigation of the San Diego County trench found there was 

an inaccurate estimation of infiltration capacity and draw down time was found to be twice as 

long as anticipated.  The trench was installed on a fractured sandstone soil mix under the 

guidance of the geotechnical engineer after conducting a drill hole permeability test.  Only after 

excavation began was it revealed few fractures were present and the fractures were not 

homogeneous therefore, permeability became limited.  It is worth noting no laboratory soil 

analysis was conducted for either site in this study. 

 After completing this implementation study, the authors propose modifications to siting 

and design requirements.  For infiltration testing, it is recommended to apply a conservative 

factor of safety to the lowest measured infiltration rate and to increase the number of tests per 

facility footprint.  Groundwater exploration should occur in a timely fashion so that it correlates 
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to seasonally high ground water elevation.  Additionally, it should be noted during site 

investigations any evidence of mottling or soil color change occurs, as this is an indicator of 

groundwater flucuations.  Having a shorter drawn down time than 72 hours will result in a larger 

facility and a longer interval between required maintenance.  It is speculated 48 hours is a more 

appropriate requirement for draw down time.  Lastly, a laboratory soil characterization should be 

done at the site footprint (Currier, et al., 2001). 

4.1.3 Infiltration-based LID Design Considerations 

 The National LID Manual provides useful information regarding the generic 

characteristics and site considerations for each practice; however, it is lacking in technical 

information.  The Maryland Stormwater Design Manual (2009) provides detailed design 

information on traditional, centralized stormwater management, LIDs, and micro-practices.  

Maryland has adopted performance factors to alleviate the impacts of stormwater runoff.  The 

performance factors include minimizing stormwater runoff, maximization of pervious areas, 

providing groundwater recharge equivalent to pre-development volumes, and an acceptable level 

of water quality protection.  The overall goal of the manual is to guide the engineering consultant 

in proper installation and long-term performance of these stormwater management practices.    

 Groundwater infiltration testing, depth to water table investigation, sequence of 

construction, material specifications, and landscaping requirements are a few of the details 

provided in the Maryland Stormwater Design Manual.  Groundwater infiltration testing and 

depth to water table should be evaluated close to initial concept design to ensure proper 

infiltration-based LID functioning.  Materials specifications help ensure the stormwater facility is 

functioning according to a set standard.  Landscaping requirements not only provide site 

stabilization but aesthetics to the community as well.  Detailed, consolidated descriptions of 
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these technical guidelines are provided in Appendix C of this thesis.  It is worth noting 

infiltration trenches call for cleaned, washed aggregate; while this is not specified for rain 

gardens, bioretention, or swales, it is normally washed at the plant however; it does not do any 

harm to require washed aggregate on construction specifications.  

 Infiltration-based LIDs are appropriate for most land use types.  However, care must be 

taken to avoid infiltration of pollutants into groundwater.  Groundwater pollution can happen 

when contaminants move rapidly through soils with a high infiltration capacity, like those in 

Florida; therefore, consideration must be given to the drainage area’s surrounding land use and 

possibly providing pre-treatment, if necessary (Chahar, Graillot, & Guar, 2012; Duchene, 

McBean, & Thomas, 1994).  In the Maryland Manual, wet swales are the only LID or micro-

practice that explicitly prohibits runoff from a designated hot spot.  All other practices must have 

either pre-treatment for hydrocarbons, trace metals, and toxicants or install an impermeable liner 

to avoid direct groundwater infiltration.  Hot spots are generally heavily industrialized operations 

such as salvage yards, vehicle maintenance facilities, fleet storage areas, marinas, outdoor 

loading/unloading facilities, hazard waste facilities, and commercial container nurseries (MDE, 

2009). 

4.2 Other Infiltration-based LID Practices 

 Bioretention and infiltration trenches appear to be the most widely studied LID practices, 

while rain gardens have gained acceptance with homeowners.  Listed below are many more 

infiltration-based LID practices which receive less recognition while other practices based on 

LID principles might be desirable in Southwest Florida when there are high seasonal water tables 

or limited space concerns.   
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4.2.1 Rain Gardens 

A rain garden is a shallow landscape feature consisting of a saucer-shaped depression that 

temporarily holds runoff.  Rain gardens typically consist of infiltrating soil bed, a mulch layer, 

and plants such as shrubs, grasses, and flowers.  Captured runoff from downspouts, roof drains, 

or driveways may temporarily pond as it slowly filters into the soil over 24 to 48 hours.  Rain 

gardens may be used in retrofitting and redevelopment applications as well as new construction 

(MDE, 2009).  A section view of a rain garden is provided in Figure 4.3. 

 
 
 
 
 
 

Figure 4.3 Rain Garden Section View (MDE, 2009) 
 
4.2.2 Dry Well 
 

A dry well is an excavated pit with gravel or stone, which provides temporary storage of 

stormwater runoff from rooftops until it is infiltrated before the next storm event.  The dry well 

storage area may be a shallow trench or a deep well.  Dry wells can be used in residential and 

commercial sites however; runoff should be from small drainage areas such as a single rooftop or 

downspout.  Successful implementation is dependent upon soil type and depth to groundwater 

(MDE, 2009).  A section view of a dry well is provided in Figure 4.4. 

 
 
 
 
 
 
 
 
 

Figure 4.4 Dry Well Section View (MDE, 2009) 
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4.2.3 Swales 
 

Swales are linear channels that can provide surface runoff conveyance, flow attenuation 

of stormwater runoff, and water quality treatment.  They can be used for primary or secondary 

stormwater treatment on residential, commercial, industrial, or institutional sites.  Swales are 

suitable for new development, re-development, and retrofitting.  Their linear feature allows their 

use in place of curb and gutter structures along roadways.  Swales can provide pollutant removal 

through vegetation, sedimentation, biological uptake, and infiltration into the underlying soil 

media.  There are usually three design variations such as grass swales, wet swales, and bio-

swales.  Wet swales are used for treating roadway runoff in low-lying or flat terrain with high 

groundwater.  Wet swales may be useful in Florida due to its flat terrain and high water table 

characteristics.  Bio-swales can be used in all soil types since an underdrain is typically utilized. 

Grass swales are best suited along highway and roadway projects.  Implementation of each swale 

type is highly dependent upon site soils, topography, and drainage characteristics (MDE, 2009).  

Pictured in Figures 4.5 and 4.6 below are typical wet and bio-swale configurations. 

 
 

Figure 4.5 Wet Swale Plan and Section View (MDE, 2009) 
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Figure 4.5 (continued) 

 

 
 

Figure 4.6 Bio-swale Plan and Section View (MDE, 2009) 
 
4.2.4 Level Spreader 
 
 Level spreaders used in conjunction with a vegetated filter strip may be used in areas 

where the seasonally high water table may prevent the use of other infiltration-based LID 

practices.  Hunt et al. (2010) conducted a study on a level spreader and vegetated filter strip 

combination in North Carolina.  A previous study had shown this type of combination showed 
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promise in fulfilling pre-development hydrology associated with LID implementation.  During 

the 2010 study, an 85% runoff volume reduction was achieved compared to 49% in the previous 

2009 study.  The impervious area to vegetated filter strip ratio was lower in the 2010 study than 

the 2009 study, 8:1 and 28:1 respectively.  Additionally, the 2010 study graded the slope to 

1.25% and added 8 inches (20 cm) of a sandy loam, presumably to increase infiltration capacity.  

It appears this combination may have less outflows during storm events than bioretention 

however, this may due to the naturally occurring site features (Hunt, et al., 2010).  This 

structural/nonstructural combination may have applicability in Florida due to the flat slopes, 

sandy soils, and areas with occasionally high seasonal water table.  The configuration of the level 

spreader and a vegetated filter strip is shown in Figure 4.7. 

 
Figure 4.7 Combined Level Spreader and Vegetated Filter Strip Plan View 
(Hunt, Hathaway, Winston, & Jadlocki, 2010 with permission from ASCE see Appendix A) 
 
4.3 Micro-scale Practices  
  

Micro-scale practices are small water quality treatment devices that typically resemble 

larger structural practices.  These practices are used to capture and treat stormwater runoff from 

discrete impervious areas, usually less than one acre, and typically include natural systems, 
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vegetation, and soils, which may be interconnected to create a more natural drainage system.  

These practices can be distributed throughout the project site to provide stormwater management 

at the source unlike their larger, structural relatives that are typically “end-of-pipe” treatment for 

larger drainage areas.  Micro-scale practices are used in new development to promote runoff 

reduction and water quality treatment via infiltration, filtration, evapotranspiration, or a 

combination of techniques.  Additionally, they are to promote recharge in new development and 

be planted as part of the landscaping plans (MDE, 2009).  Their implementation in Florida 

appears promising given the state’s naturally occurring sandy soils along with coastal areas that 

have high seasonal water tables.  These micro-scale practices are outlined below along with their 

coordinating figures. 

4.3.1 Submerged Gravel Wetlands  

A submerged gravel wetland is a small-scale filtration practice utilizing wetland plants in 

a rock media to provide water quality treatment.  The lowest elevation of the wetland receives 

runoff and is distributed throughout the system, ultimately discharging at the surface.  A 

submerged gravel wetland can be located in limited spaces such as landscaping areas for traffic 

islands or roadway medians.  Pollutant removal is achieved through biological uptake from algae 

and bacteria growing within the filter media.  Wetland plants provide additional nutrient uptake 

while the physical and chemical treatment processes allow filtering and absorption of organic 

matter.  Submerged gravel wetlands are well suited in areas where a high water table or poorly 

drained soils are present. This practice is not generally recommended for individual residential 

lots.  If the site characteristics do not allow for a standing pool, a larger drainage area may be 

required to maintain saturated conditions within the wetland (MDE, 2009).  A plan and section 

view of a submerged gravel wetland is provided in Figure 4.8. 
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Figure 4.8 Submerged Gravel Wetland Plan and Section View (MDE, 2009) 

  
4.3.2 Micro-Bioretention 
 

Micro-bioretention practices capture and treat runoff from discrete impervious areas by 

passing it through a filter medium.  Surface runoff is stored temporarily and filtered in shaped, 

landscaped facilities.  The filtered stormwater is either returned to the stormwater conveyance 

system or infiltrated into the soil.  Micro-bioretention practices can be adapted for use anywhere 

there is landscaping.  Micro-bioretention can be used for new development, redevelopment, or 

retrofitting applications in residential, commercial, and industrial projects.  Micro-bioretention 

not only has the potential to provide water quality treatment and aesthetic value to the 
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community, it can be applied to a variety of projects such as concave parking lot islands, linear 

roadway or median filters, residential cul-de-sac islands, and ultra-urban planter boxes (MDE, 

2009).  A plan and section view of micro-bioretention is provided in Figure 4.9. 

 

 
Figure 4.9 Micro-bioretention Plan and Section View (MDE, 2009) 

 
4.3.3 Pocket Practices 
 

These are practices with small, discrete drainage areas and can be distributed throughout 

the project site.  The pocket sand filter should be applied to small sites where sediment loads are 

expected to be moderate to low.  The pea gravel allows runoff into the filter system should the 
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surface should become clogged.  The term pocket wetland refers to a wetland that has such a 

small contributing drainage area there is little or no baseflow available to sustain water 

elevations during dry weather.  Alternatively, water elevations are heavily influenced and may be 

maintained by a locally high water table (MDE, 2009).  Pictured in Figures 4.10 and 4.11 below 

are typical “pocket” sand filter and wetland configurations. 

All of these under-represented and micro-scale practices share the same goal of providing 

stormwater management and treatment at the source, helping to maintain pre-development 

hydrology, and some also possess the potential to provide groundwater recharge.  Given 

Southwest Florida’s topography, hydrology, geology, and climate, it is possible to implement 

these practices on a larger, more widespread scale.   

 

 
Figure 4.10 Pocket Sand Filter Plan and Section View (MDE, 2009) 
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Figure 4.11 Pocket Wetland Plan and Section View (MDE, 2009) 
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CHAPTER 5:  PROSPECT OF LID IMPLEMENTATION IN FLORIDA  

5.1 Local LID Pursuits 

 Several local governments in Southwest Florida have in place, or are planning to execute 

mechanisms toward increasing LID implementation within their communities.  Additionally, 

LID has been promoted as a sustainable stormwater practice in the preservation of springs.  The 

largest government entity addressing LID promotion is Sarasota County followed by the City of 

Winter Haven.  Pinellas and Hillsborough Counties are also working to remove regulatory 

barriers that might prohibit LID use.   

 In 2008, the Florida Department of Environmental Protection (FDEP) and the Florida 

Department of Community Affairs (FDCA) published Protecting Florida’s Springs: An 

Implementation Guidebook to address water quality and water quantity issues facing springs.  

Low Impact Development is one component in the protection of Florida’s springs.  The value 

added by the implementation of LID is applicable to the state as a whole, which is facing a 

reduction in aquifer recharge and increased groundwater consumption.  This publication 

discusses how creating a pre- and post- development recharge requirement to stormwater 

management, along with the implementation of LIDs and conservation cluster design, can help 

ease the burden placed on the aquifer (FDEP & FDCA, 2008). 

 Sarasota County’s LID Manual (2011) was developed in an effort to provide much 

needed design tools for LIDs in Southwest Florida.  The manual is for guidance purposes only 

and not a regulatory requirement (County, 2015).  Upcoming Sarasota County Commissioner 

meetings will be held to incorporate LID into the Land Development and Zoning Codes.  The 



80 

LID manual states that it is to be used as a supplement to County and SWFWMD stormwater 

design criteria.  The intended audience includes planners, engineers, developers, and county 

officials.  The format is closely aligned with the National LID Manual regarding planning 

considerations to retain natural site features and minimize clearing and grading followed by 

acceptable LID practices.  The Sarasota County LID Manual states it provides key considerations 

for the design of shallow bioretention, pervious pavements, stormwater harvesting, green roof 

stormwater treatment, rainwater harvesting, and detention with biofiltration, also known as 

bioretention with an internal water storage zone.   

 In Chapter 2 of the Sarasota County LID Manual, site assessment and preservation of 

natural features are discussed as an important LID component.  As such, it is stated an LID site 

should consider preserving existing site assets, control runoff at the source, promote infiltration, 

minimize site disturbance, and preserve the on-site seasonal high groundwater table.  From a 

design perspective, words like “shall” and “must” are noticeably absent.  From a plan review 

perspective, having “shall” and “must” reduces review time as the process has been standardized 

to some extent; thereby, potentially increasing review time and possibly increasing the 

installation of LIDs due to consistent standards and practices.  Once LID becomes officially 

adopted as a stormwater management technique, the language will be changed to include “shall” 

and “must”.  The LID Manual states that eleven separate county documents should be referenced 

together with this manual, by inclusion, for guidance on LID projects.  This might be an 

inadvertent barrier to implementation by forcing parties interested in implementing LIDs on a 

site to review requirements in various other ordinances as opposed to providing general 

information with a comment to follow up in the actual ordinance, if necessary. 
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 Some aspects of this LID Manual might inadvertently discourage the implementation of 

LIDs in Sarasota County.  The manual addresses common issues that arise to those unfamiliar 

with LIDs such as appropriate siting, pollutant removal ability, draw down time, long-term 

maintenance and operation.  While attempting to address these issues, more barriers to 

implementation may have been created, such as having a lack of confidence in LID performance, 

overly restrictive and costly nutrient-adsorption layers, and unrealistic testing requirements after 

LID installation.  In keeping with the theme of this thesis, the bioretention systems will be 

discussed since, RWH in the Sarasota County LID Manual is not its own practice and associated 

with green roofs. 

 Chapter 2 of the Sarasota LID Manual provides a comparison of LID options in meeting 

site and watershed goals for each practice.  The tabular feedback provides information on 

whether the practice meets general site considerations, environmental site considerations, and 

special watershed site considerations.  At a glance, the design engineer would have general 

guidance on how each practice can meet the specific considerations.  The LID practices 

promoted in Sarasota County are generally ranked as feasible and practical for general site and 

environmental site considerations.  However, when the same practices are ranked in special 

watershed site considerations, such as discharging to an Outstanding Florida Water (OFW), they 

are given a lower overall use potential, stating the practice may be feasible but also may require 

additional design components.  This might be an unintentional disincentive for LID 

implementation, especially for bioretention systems.  In Sarasota County, bioretention systems 

have explicit requirements on the nutrient-adsorption layer in addition to being required to meet 

the 1-inch pollution control volume.  It would seem bioretention systems designed this way 
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could be treating the stormwater more effectively such that they could be used or encouraged 

when discharging to an OFW. 

 The manual states neither bioretention system will likely satisfy the storage capacity 

requirements for water quantity control in Sarasota County and SWFWMD.  Chapter 3 of the 

Sarasota County LID Manual provides discussion on design considerations, maintenance, and 

testing for the two types of bioretention, pervious pavement, green roofs with cisterns, and 

stormwater harvesting.  The manual states shallow bioretention and detention with biofiltration, 

also known as bioretention with an internal water storage zone, are designed for water quality 

purposes only.   

 The bioretention systems appear to be treated as a landscape island rather than a 

stormwater facility.  Landscaping is an important aesthetic component in bioretention.  Proper 

plant selection can eliminate the need to excessive maintenance and fertilizer applications.  Both 

systems allow the use of fertilizer application, though records must be maintained.  Fertilizer 

application could be avoided all together if the use of native plants, those that are amiable to 

inundation and periods of drought, were installed or required.   

 In Section 3.1.2.3, Planting Soil Filter Bed and Nutrient-Adsorptive Layer, the planting 

soil filter bed and the nutrient-adsorption layer contain extensive and potentially costly media.  It 

is unclear if both layer requirements refer to a particular product description, though it is not 

referenced.  When comparing the draft LID manual (2007) to the current manual (2011), specific 

construction materials, such as #57 stone, were left out in these sections as the County felt it 

important to not perform the system design for the end user.  In addition to the cost of materials, 

the cost of installation will be greatly increased due to the contractor creating and uniformly 

mixing two distinct media layers.  The design consideration section does not address a 
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requirement for infiltration capacity minimums in the planting soil filter bed and the nutrient 

adsorption layer.  Minimum permeability and porosity are discussed.  Permeability for the 

nutrient adsorption layer is to be 0.03 to 0.25 inches per hour and is measured at the dry unit 

weight.  If this were a true soil, permeability would be conducted under saturated conditions to 

evaluate the ability of water to move vertically.   

 Strict testing requirements after bioretention installation appear to create inadvertent 

barriers to LID installation.  The manual places a proper incentive for a pre-treatment filter strip 

by requiring testing every 3 years as opposed to every 18 months for a bioretention system 

without a filter strip.  In addition to having the appearance of a lack of confidence in the 

performance of bioretention, the testing requirements for both bioretention systems seems overly 

burdensome to the stormwater facility owner.  To meet the testing requirements, the bioretention 

owner with a pre-treatment filter strip must conduct three double-ring infiltration tests at 

different locations within the system and submit the results to the County.   

 Pervious pavement, green roofs with a cistern, and stormwater harvesting from a wet 

pond receive overall credit for meeting runoff flow attenuation.  Rainwater harvesting is 

considered an auxiliary benefit and does not count toward runoff reduction; specifically, 

SWFWMD does not consider rain barrels, even if used in series, a stormwater BMP.  Shallow 

bioretention and detention with biofiltration systems are for supplementary water quality 

treatment only and do not count toward overall stormwater management.  Since there is no 

regulation of stormwater volume control for small design storm events, the incentive appears to 

be installing LIDs is for water quality treatment only.   

 The City of Winter Haven has embraced infiltration-based LIDs as part of their 

Sustainable Water Resource Management Plan.  In their document, Sustainable Water Resource 
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Management (2010), they state the overarching goal is to restore the pre-development hydrology 

in the uplands and lowlands to ensure water and other natural resources for future generations.  

Utilizing infiltration-based LIDs such as rain gardens, percolation ponds, swales, and pocket 

wetlands can restore the hydrologic connectivity between reaches and aquifer recharge can be 

increased.  Post-development hydrologic conditions such as recharge, water quality, storage, and 

conveyance are to match pre-development conditions as much as possible.  The City has 

installed numerous rain gardens and roadside swales to provide relief from localized flooding 

and to act as demonstration sites for public education (City of Winter Haven, 2010). 

 Pinellas and Hillsborough counties are in the process of either reviewing their stormwater 

management manual or reviewing regulatory barriers to LID implementation.  Pinellas County is 

incorporating LIDs into their Draft Stormwater Manual (Pinellas County, 2015).  Incorporation 

of LIDs into a local stormwater management manual have the potential to increase audience 

exposure to such practices and eliminates the need to switch back and forth between manuals for 

design guidance.  It details the pre-development design considerations for minimizing site 

disturbance, retaining natural site features that can provide conveyance or depressional storage.  

Low Impact Development practices outlined in the draft manual include vegetated treatment 

swales, exfiltration trenches, vegetated natural buffers for pre-treatment, pervious pavement, 

green roofs with cisterns, stormwater harvesting, managed aquatic plant systems, and 

biofiltration.  

  The design criteria information provided is similar to the Sarasota County LID Manual, 

though more information is provided for the engineer’s use on calculating BMP retention 

recovery and acceptable testing procedures for soils and depth to seasonally high ground water.  

For bioretention systems, the media layers are very similar, except Pinellas County requires a 
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total depth between the planting soil bed and nutrient-adsorption layers of 36 inches as compared 

to 12 inches in Sarasota County, excluding the mulch layer.  The testing requirements are 

identical in that the system must under go three double-ring infiltration tests at different locations 

every 3 years.  Additionally, it appears the lack of confidence in LIDs continues to Pinellas 

County as exfiltration trenches, underground storage and retention, vegetated natural buffers, and 

biofiltration on County owned, operated, or dedicated property will not be accepted.   

 Tetra Tech (2014) was contracted by Hillsborough County to identify GI/LID 

inconsistencies and barriers in local codes; additionally, Tetra Tech was charged with providing 

guidance on removing any barriers identified.  Tetra Tech’s Green Infrastructure Opportunity 

Checklist identifies five potential areas where regulatory barriers might exist.  These include 

minimizing connected impervious area, preserve and enhance the hydrologic function of 

pervious areas, RWH for either potable or non-potable supply, allow and encourage the use of 

multi-use stormwater controls, and manage stormwater to sustain stream functions.  After 

reviewing Hillsborough County’s Land Development Code, Stormwater Management Technical 

Manual, Transportation Technical Manual, and Development Review Procedures Manual, Tetra 

Tech found the regulations either mute or conflicting in the five areas where barriers might exist 

previously listed.  Hillsborough County reviewed these initial findings and concluded their 

highest priority changes were to address stormwater harvesting and reuse, provide multiple 

benefits of developed space, alter driveway design to reduce impervious area, update green street 

design to include rain gardens, tree boxes or other LID practices, and alter off-street parking 

design requirements.  The tentative implementation schedule is staggered throughout 2015 and 

includes significant changes to the Transportation Technical Manual so that roadside LIDs may 
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be implemented as well as the reduction of impervious area by updating the Joint Use and Shared 

Parking code (Tetra Tech, 2014). 

5.2 Low Impact Development Implementation Perspective Research 

 As discussed in Chapter 2 of this thesis, LID implementation faces numerous barriers 

toward greater placement throughout watersheds.  These barriers occur both nationally and 

locally.  Most notably, there are consistent, recurring obstacles toward fulfilling widespread LID 

installations.  Whether the barriers are real or perceived, they have occurred from Tampa Bay to 

Puget Sound and communities in between.  Many communities have been successful in 

overcoming these obstacles; one goal of this thesis is to provide information and guidance to 

decision makers regarding the application of various low cost LID practices in Southwest 

Florida. 

5.2.1 Concerns of LID Implementation Locally 

 A brief social/ behavioral research study was conducted to gauge interest, knowledge, 

acceptance, and evaluate the implementation of LID within the SWFWMD boundaries.  

Comments were reviewed from the graduate level Urban Hydrology class at the University of 

South Florida, Tampa campus, where group presentations were made on various LID practices.  

This research is important because education of LID is not only a part of Phase II NPDES 

compliance (Rittenhouse, Kloss, & Weinstein, 2006) but also education of stormwater 

professionals has been identified as a barrier to implementation (Coffman, 2004).  Therefore, the 

attitudes of Water Resources Engineering students before and after the topic was covered in a 

relevant course provide insights into whether this intervention can help to overcome this barrier. 

Additionally, the study conducted interviews and documented comments regarding LID 
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implementation from five meetings with local government agencies.  A copy of the IRB study 

confirmation is provided in Appendix D of this thesis. 

5.2.1.1 Methodology 

 The objective of the research was to obtain a general level of information from the 

participants on a broad topic.  In the Urban Hydrology class, individual LID practice 

presentations were observed, comments made on Canvas by fellow classmates were reviewed, 

and follow-up comments from each group of presenters were also analyzed.  The demographics 

of the Urban Hydrology class included a mix of graduate students that were working towards an 

advanced degree beyond the Master’s level to those who worked full-time while pursuing a 

Master’s degree.  Groups of two students each gave a 30-minute presentation on their assigned 

LID practice focusing on an introduction to that particular LID, engineering design guidelines, 

two case studies, and applicability to Florida.  The LID practices presented were green roofs, 

pervious pavement, grassed swales, bioretention, rain gardens, rain barrels, dry wells, urban 

agriculture, and policies and public outreach regarding LID.  To further LID understanding, each 

student not presenting was required to post a follow up question on Canvas regarding each 

practice and no single question could be repeated.  Lastly, the presenters were required to 

provide answers on Canvas to the questions posed by their fellow students.   

 For the interviews with local government agencies, personal interviews were conducted 

with staff from five government agencies associated with stormwater management within the 

SWFWMD boundaries.  The purpose of the interviews was to determine the level of LID 

implementation within each community.  Either before the meeting or during the meeting, some 

participants requested anonymity.  Therefore, all comments were anonymized.  The number of 

personnel present during the interviews, excluding USF participants, ranged from two and up to 
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five.  The allotted time for the meetings was generally set for an hour; however, meetings 

frequently went over due to the interest in this discussion topic. 

 Each interview was approached with the intention of asking the same set of questions.  

These questions were 1) Is LID actively promoted within your agency?  2) If so, which ones?  3) 

How are they promoted?  4) Are pre-development meetings held?  5) Are LIDs considered part 

of the overall stormwater management plan?  6) Do you provide sole or overriding approval 

authority?  7) Do you offer incentives for LID implementation?   

5.2.1.2 Results 

 Spring 2014 was the first time LIDs were incorporated into the Urban Hydrology 

curriculum.  Graduate students who took Urban Hydrology learned how to design traditional 

stormwater management practices and have now begun to gain exposure to LID.  Most students 

did not have significant exposure to LID before taking Urban Hydrology and found the concept 

discussion provoking.  Some of the questions that arose can be attributed to a lack of 

understanding in the applicability of LID to Florida and subsequently, a barrier to overcome in 

the implementation of LIDs locally.   

   Initially, most students were skeptical of LIDs and their implementation in Florida; 

especially, those who worked as full-time engineers.  Following the first presentation on 

drywells, comments included statements such as questioning how will it work in Florida given 

the state’s climate and high water table as well as matter-of-fact statements that it will not work 

in Florida such as “I have to disagree with you regarding its (drywells) applicability to Florida.  I 

don’t think it will work here given the amount of rain we get from year to year...”.  Though 

students had to pose an original question, with no repeating questions per presentation, the most 

frequent questions or comments were regarding the lack of Florida design standards as most 
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presenters had to use out-of-state design guidelines, operation and maintenance guidelines, 

planting requirements for vegetation dominant practices, and recurring confusion over 

nomenclature such as distinguishing between a rain garden and bioretention and how an 

engineered bioswale is different than the typical roadside swales seen in the state. 

 As the class progressed, the students became more receptive to LID implementation and 

began to evaluate how LIDs can be incorporated in the stormwater management landscape.  Over 

the course of the semester, responses to presentations became more about how to provide this 

information to the general public and regulators in a manner that is understandable.  It is likely 

that the students became more receptive as they researched their LID of choice and became more 

familiar with design requirements in addition to intangible benefits provided by the LID practice 

such as aesthetics, pollution reduction benefits, and groundwater recharge.  This hypothesis is 

based on comments such as “This is definitely a LID that deserves to be implemented more”, 

“How can we get more people to care about implementing LIDs?”, “How about local 

government Economic Development Departments encouraging developers to incorporate LID 

technologies into a project by offering additional tax incentives or credits?”. 

 For the interviews with local government agencies, upon asking the first question, 4 out 

of 5 conversations quickly evolved into a discussion of barriers they faced in attempting to 

implement LID within their communities.  Looking at this pattern from another perspective, it 

appears local government agencies support LID implementation on a greater level and action to 

address the barriers will help facilitate greater LID installations throughout future site 

development.  Common barriers to LID implementation identified in these interviews are 

presented in Table 5.1. 
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Table 5.1 Regional Barriers to LID Implementation 
Identified Barrier Number of Respondents 

Education of upper level management 5 
Public buy in for sustainable growth 5 
Proper incentives for LID implementation 4 
Need for consistent, regionally appropriate design standards 3 
Change in stormwater management to include design storms 3 
Identify a way to reduce “burden of proof” required by SWFWMD to 
approve alternate stormwater designs 

3 

More stringent enforcement of HOAs responsibility to maintain 
stormwater management facilities 

3 

 
5.2.1.3 Discussion of Study Results 

 When comparing the above study results to what has been previously studied both 

nationally and locally, it appears widespread LID implementation in Southwest Florida might 

undergo the same growing pains as other regions have faced, such as the Utah case study 

(Burian, et al., 2008).  Education and increased exposure appear to be the most important 

component to greater LID implementation.  Education would come in many forms depending on 

the audience.  In academia, the Urban Hydrology course was an example of how to incorporate 

general knowledge on LID and for students to gain an understanding of design requirements.  

Education for the development community might include public meetings and training courses 

once municipalities remove regulatory barriers to LID implementation.  The development 

community might also benefit from a standardized design manual specifically for Southwest 

Florida that could be produced by either FDEP or SWFWMD.  Public education could take the 

form of informational meetings at County Extension offices or by non-profit environmental 

organizations such as the Tampa Bay or Sarasota Bay Estuary Programs.  Education of 

governing boards and elected officials could include providing information regarding the cost of 

excess, untreated runoff compared to providing localized treatment and retention at the source. 
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 Another key factor revealed in the study was addressing a monetary motivator for the 

development community to increase LID implementation.  Tax incentives, stormwater runoff 

reduction credits, and cost-sharing opportunities are enticing when agencies are attempting to 

introduce new technologies.  However, the incentive generally associated with constructing LIDs 

is the runoff reduction credit associated with small design storm events such as the 2-year, 24-

hour event.  Florida’s method of strictly capturing anywhere from 0.5 inches to 1.0 inches of 

runoff for pollution control versus volume control, i.e. a design storm event, conflicts with the 

reduction of directly connected impervious areas and the restoration site hydrology associated 

with LID.  Non-directly connected impervious area is considered in the design volume of a 

stormwater management system; however, no explicit impetus has been found to limit directly 

connected impervious area.  Therefore, it may prove difficult to provide stormwater reduction 

credits implementation of LID in Florida under the current method of stormwater management; 

nevertheless, cost-sharing and tax incentives might still be viable options.   

5.3 Possible Solutions to Increase LID Implementation in Florida 

 Low Impact Development implementation is an alternative to conventional stormwater 

management that is slowly gaining momentum within the SWFWMD jurisdiction.  As discussed 

in Chapter 2, education is paramount in LID success.  Education includes engineers, developers, 

planners, local government agencies, and the public.  When evaluating other success stories, like 

those provided in Chapter 2, local governments took a stake in implementing LIDs and installing 

pilot projects; subsequently, the value placed on LID implementation increased within the 

community.   

 Since Southwest Florida coverage reaches from the coastline to the central ridge, a 

mnemonic device has been created to guide others in the understanding of proper LID 
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placement.  The idea is tagged as “Let’s Make LIDs RADD”.  ‘RADD’ is short for site 

reconnaissance (R), appropriate practice (A), drainage investigation (D), and finalize the design 

(D).  Site reconnaissance (R) includes conducting a neighborhood investigation, hotspot 

identification, open space or natural resource inventory, and verifying desktop assumptions 

match what is seen in the field.  Choosing an appropriate LID practice (A) is based on 

impervious area, site aesthetic requirements, and the surrounding landscape.  The drainage 

investigation (D) is probably as important as conducting site reconnaissance.  It determines 

whether the initial practice chosen is a dry or wet LID.  The infiltration rate and seasonally high 

water table should be conducted at the site and at the proposed bottom elevation of the system.  

The tests should be conducted by a geotechnical engineer and field verified by the design 

engineer.  Once all of this information is collected, it is then possible to finalize the site design 

(D) with confidence in the LID practice chosen.    
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CHAPTER 6:  CONCLUSION 

6.1 What Do the Hydrologic LID Case Studies Say? 

 Stormwater management is required due to development and alteration of the natural 

environment.  It is heavily regulated in Florida and at the national level.  Over the last two 

decades, LID has been promoted as a more sustainable and environmentally friendly method of 

controlling urban runoff.  Hydrologic case studies of LID provided in Chapter 2of this thesis, 

show that greater watershed restoration and a more balanced water budget is possible when 

implementing LIDs.  When measuring the difference in runoff between pre-development and 

high impact development for more pervious soils, it appears the relative impacts of urbanization 

is greater.  However, the potential for mitigation of the impacts of urbanization through runoff 

reduction is also much greater for high infiltration capacity soils.  Having a greater potential for 

urbanization mitigation in Florida’s highly pervious soils is significant, in that it opens the door 

for more research in quantifying the benefits of LID.  Southwest Florida is currently in its 

infancy when adopting LID on a broad-scale; however, several municipalities are in the process 

of incorporating LID into their stormwater management programs. 

6.2 Rainwater Harvesting Options for Florida 

 Rainwater harvesting is a promoted LID practice that allows for peak flow reduction 

during wet weather events and reduces potable water demand for uses that would not normally 

require potable water quality.  The two main options for RWH are rain barrels and cisterns.  The 

difference between the two is a matter of scale.  Rain barrels are typically implemented in one or 

more barrels with a volume of approximately 55-gallons, where cisterns start at hundreds of 
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gallons.  Effective Rainwater Harvesting design includes long-term supply and demand 

considerations as well as physical site considerations.  Southwest Florida’s climate pattern is not 

compatible with rain barrels for runoff reduction due to their small volume; however, they still 

offer some water savings to homeowners.  Given the type, duration, and frequency of storm 

events, cisterns are the most likely option for offering runoff reduction as well as reducing 

potable water demand.  For example, in Tampa, Florida, in order to achieve approximately 70% 

catchment efficiency, a homeowner would need approximately fourteen 55-gallon rain barrels or 

a 750-gallon cistern.  Conversely, for a single 50-gallon rain barrel that serves outdoor use only, 

the water-saving efficiency is 10% for Tampa.   

6.3 Infiltration-based LID Practices and their Applicability to Florida 

Infiltration-based LIDs have the ability to mitigate groundwater disruptions that result 

from urbanization such as minimizing receiving water body hydromodifications and reducing 

pollutant discharges to surface waters when designed properly and used in proper circumstances.  

These practices include systems such as bioretention, level spreaders, drywells, and “pocket” 

practices i.e. pocket wetlands.  Infiltration-based LIDs may be wet or dry systems and rely on 

easily attainable construction materials such as gravel, sand, and native vegetation.  This 

combination may have applicability in Florida due to the flat slopes, sandy soils, and areas with 

occasionally high seasonal water table.  Infiltration-based LIDs help facilitate the main purpose 

of LID, which is to restore or maintain pre-development hydrology of the site.  National 

standards for LID design should be considered a guideline and adapted accordingly to regional 

conditions.  In Southwest Florida, it is possible to utilize any number of these practices though 

one of the key factors to success is proper knowledge of the seasonally high water table, 

especially along the coast line.  Additional factors to ensure LID success include installing a pre-
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treatment filter strip, standardized infiltration rate testing, standardized materials specifications, 

proper sequence of construction, and diligent construction inspections during and following 

construction.     

6.4 Increasing Widespread LID Implementation in Florida 

The prospect of increased LID implementation within Southwest Florida appears 

promising.  Municipalities are actively incorporating LID into their stormwater management 

recommendations.  A behavioral study and interviews with staff from local governments 

regarding LID was conducted.  The results from this study indicate that Southwest Florida is 

facing many of the same barriers to implementation that other communities across the nation had 

to overcome.  These include lack of knowledge and education, lack of regionally specific design 

guidelines, and few “real world” pilot projects.  Based on the behavioral study, it appears 

education could be the strongest key to LID acceptance.  Over the course of three months, 

opinions regarding LID in Southwest Florida went from not possible to positively inquiring how 

to increase implementation.  Since the region faces most of the same barriers to implementation, 

it may be possible to use other cities’ methods to increase LID acceptance and implementation as 

a template while modifying them so they are regionally appropriate.  From a day-to-day 

engineering perspective, remembering the mnemonic device “RADD” may help increase 

successful LID projects.  
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APPENDIX A:  CITATION PERMISSIONS 

 
 The following is permission to use Figure 4.7.  

 



107 



108 

 
 
 
 

 
APPENDIX B:  ACRONYMS 

 
2DUSAT – Two dimensional saturated-unsaturated finite-element-method modeling software 
 
AASHTO – American Association of State and Highway Transportation Officials 
 
ARRA – American Recovery and Reinvestment Act 
 
ASTM – American Society for Testing and Materials 
 
BAV – Bioretention abstraction volume 
 
BMP – Best management practice 
 
CSO – Combined sewer overflow 
 
CWA – Clean Water Act 
 
CWP – Center for Watershed Protection 
 
DCIA – Directly connected impervious area 
 
EPA – Environmental Protection Agency 
 
FAC – Florida Administrative Code 
 
FC – Field Capacity moisture content of soil 
 
FDEP – Florida Department of Environmental Protection 
 
GI – Green Infrastructure 
 
HEC-HMS – Hydrologic Engineering Center - Hydrological Modeling System 
 
HGWT – Height of ground water table 
 
HSG – Hydrologic Soil Group 
 
IRB – Institutional Review Board 
 
LEED – Leadership in Energy & Environmental Design 



109 

LID – Low Impact Development 
 
LMS – Lower Media Storage 
 
MATLAB – Technical computing software 
 
MDE – Maryland Department of Environment 
 
MFS –Myakka Fine Sand 
 
MIDS – Minnesota’s Minimal Impact Design Standards 
 
MMSD - Milwaukee Metropolitan Sewerage District 
 
MS4 – Municipal Separate Storm Sewer System 
 
MUSIC - Model for Urban Stormwater Improvement Conceptualisation 
 
MWRD – Metropolitan Water Reclamation District for Greater Chicago 
 
NPDES – National Pollution Discharge Elimination System 
 
OFW – Outstanding Florida Water 
 
PREC – University of Florida’s Program for Resource Efficient Communities 
 
RADD – Mnemonic device developed for increasing LID success 
 
RWH – Rainwater Harvesting 
 
RWHTools – University of Utah’s rainwater harvesting modeling software 
 
RZMS – Root zone media storage volume  
 
SAT – Saturated moisture content of soil 
 
SCS – Soil Conservation Service 
 
SHGWT – Seasonally high ground water table 
 
SJRWMD – St. Johns River Water Management District 
 
SWFWMD – Southwest Florida Water Management District 
 
SWMM – Stormwater Management Model 
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TMDL – Total Maximum Daily Load 
 
UNSAT-H - a FORTRAN computer code used to simulate the one-dimensional flow of water, 
vapor, and heat in soils 
 
V - Volume 
 
WEF – Water Environment Federation 
 
WinSLAMM - Source Loading and Management Model for Windows 
 
WP – Wilting point moisture content of soil 
 
WPCLF – Ohio’s Water Pollution Control Loan Fund  
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APPENDIX C:  TABLE C.1 
 
Table C.1 Comprehensive Details of Design Materials and Specifications for Infiltration 
Trenches, Bioretention Cells, and Swales (adapted from (MDE, 2009) 
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On-site 
septic 
percolation 
test, within 
50 ft of 
trench and 
200 ft of 
bioretention, 
and on same 
contour 

Excavate 
or dig to a 
depth of 4 
feet below 
facility 
bottom 

Designed 
so excess 
flow 
discharge 
does not 
exceed 
erosive 
velocities 

Redundant 
methods in 
place to 
protect 
long-term 
integrity of 
infiltration 
rate. 
 
 
 

Facility may 
not be 
constructed 
until 
contributing 
drainage 
area 
stabilized 

Facility may 
not be 
constructed 
until 
contributing 
drainage 
area 
stabilized 

Longitudinal 
slopes of 
less than 4% 

Dry swale: 
Soil – silt, 
silty sand 
or clayey 
sand 
Sand – 
ASTM C-
33 fine 
aggregate 
concrete 
sand 

Infiltration 
trench: 
Dense 
vegetation on 
side slopes 
and floor. 
Sufficient to 
prevent 
erosion and 
sloughing 
 

Encased 
boring may 
be 
substituted 
for test pit 

Determine 
depth to 
water table, 
within the 
4 ft of 
bottom, 
and again 
24 hours 
later 

All infiltra-
tion 
systems to 
fully 
dewater 
within 48 
hours 

Use 3 of the 
following 
per 
infiltration 
trench: 
 
a) Grass 
channel 
 
b) Grass 
filter strip: 
minimum of 
20 ft and 
only if sheet 
flow 
established 
and 
maintained 

Heavy 
equipment 
and traffic to 
avoid 
proposed 
location 
during site 
construction 

Heavy 
equipment 
and traffic to 
avoid 
proposed 
location 
during site 
construction 

Peak 
velocity of 
10-year 
storm 
discharge 
shall be non-
erosive 

Dry Swale: 
6 inches of 
free-board; 
 
4:1 or 
flatter 
slopes; 
 
Facility 
bottom 2 
feet above 
seasonally 
high water 
table 
 
Bottom 
width – 2 ft 
min & 8 ft 
max 

Infiltration 
trench: 
Fescue family 
recommended 
for seeding 
due to their 
adaptability to 
sandy soils, 
drought 
resistant, 
hardiness, and 
ability to 
withstand 
brief 
inundations. 
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0.52 in./hr 
infiltration 
rate 
 
Confirmation 
by 
geotechnical 
tests 

Conduct 
Standard 
Penetration 
Testing 
every 2ft to 
a depth of 
4ft below 
facility 
bottom 

Designed to 
be off-line 
system if 
runoff 
delivered 
by storm 
drain pipe 

c) Upper 
sand layer – 
6 inch 
minimum, 
with filter 
fabric at 
sand-gravel 
interface 
 
d) Bottom 
sand layer 
 
e) Washed 
bank run 
gravel as 
aggregate 
 

Tree roots 
trimmed to 
avoid filter 
fabric 
puncturing  

Under-
drains to be 
placed on a 
3ft section 
of filter 
cloth. Pipe is 
placed next 
followed by 
gravel 
bedding 

3 inches of 
freeboard 
must be 
provided 
and safely 
convey the 
10-year 
storm 

Wet Swale: 
Generally 
same 
guidelines 
as dry 
swale with 
the 
exception 
of the 
seasonally 
high water 
table; it 
may be 
located at 
swale 
bottom and 
inundate 
swale 

Infiltration 
trench: 
Mow twice a 
year 

No 
infiltration 
from 
designated 
hot spots  

Determine 
soil 
textures at 
proposed 
facility 
bottom and 
within 4ft 
of bottom 

Stormwater 
outfalls 
shall be 
provided 
for 
overflow 
associated 
with 10-
year design 
storm event 

Sides of 
infiltration 
trench shall 
be lined 
with filter 
fabric  

Class “C” 
geotextile or 
better. 
Geotextile 
width to 
conform to 
trench 
perimeter 
irregularities 
and provide 
a 6 inch 
overlap 

If no 
observation 
well, pipe 
ends to be 
capped 

All ponding 
must be 
drained 
within 48 
hours 

Filter 
Strips: 
Pea gravel 
diaphragms 
to be 12 ft 
min and 24 
ft deep max 
Slopes 
should be 
between 2 -
6% 

Bioretention: 
Landscaping 
crucial to 
performance  

May be 
prohibited on 
karst 
topography 

Determine 
depth to 
bedrock if 
within 4ft 
of bottom 

 Extreme 
care during 
construction 
extends 
longevity of 
infiltration 
facilities 

Washed, 
AASHTO-
M-43, Size 9 
or 10 sand if 
a 6 inch sand 
filter on 
bottom 

Main 
underdrain 
collector 
pipe shall 
have a 0.5% 
minimum 
slope 

6 inch inlet 
drop 

Filter 
Strips: 
Pea gravel 
to be 
ASTM-D-
48 and 
washed 

Bioretention: 
Native plants 
should be 
used over 
non-native 
plants 

2 feet to 
water table 
 
 
 
 

Soil 
description 
of all soil 
horizons 

Stone 
aggregate 
placed in 12 
inch lifts, 
“bank run” 
gravel 
preferred 

Observation 
well for 
every 1000 
ft2 of surface 
area 

Underdrain 
may be used 
to meet 48 
hour draw 
down time 

 Bioretention: 
Plants based 
on zone of 
hydric 
tolerance 
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    Stone 
aggregate 
must be 
washed and 
meet 
AASHTO-
M-43, Size 2 
or 3 

    

Maximum 
5ac. drainage 
area 

Pit/boring 
stakes are 
to be left in 
the field 
and labeled 
as such 

Infiltration 
LIDs not 
constructed 
until 
contributing 
drainage 
area 
stabilized 

After 
aggregate 
placement, 
filter fabric 
folded over 
with a 6 inch 
longitudinal 
overlap 

When 
backfilling, 
use 12-18 
inch lifts 

Check dams 
at inlets may 
be used to 
provide pre-
treatment 
storage of 
0.1 inch of 
impervious 
runoff 

Bioretention: 
Trees and an 
understory of 
shrubs and 
herbaceous 
materials 
should be 
provided 

100 ft offset 
from water 
supply well 

 Infiltration 
facilities 
cannot serve 
as sediment 
control 
device 
during site 
construction 

Avoid native 
soil or fill 
mixing with 
aggregate 

Mulch shall 
be shredded 
hardwood 
with a 
minimum of 
6 months of 
aging 

Maximum 
bottom 
width – 8 ft 

Bioretention: 
No woody 
vegetation at 
inlet 

10 - 25 foot 
offset from 
structures 

 Prohibit 
voids 
between 
filter fabric 
and side 
walls 

Planting 
soil: 
2.5 – 4 ft 
deep 
USDA soil 
type: loamy 
sand, sandy 
loam, or 
loam 

Wet swales 
discouraged 
in 
residential 
areas 

Swales: 
Native 
vegetation 
appropriate 
for 
inundation 
frequency 

No negative 
impact down 
gradient of 
facility  

For soft 
cohesive or 
cohesionless 
soils, flat 
side slopes 
required 

Class “C” 
geotextile or 
better. 
Geotextile 
width to 
conform to 
perimeter 
irregularities 
and provide 
a 6 inch 
overlap 
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    PVC 
distribution 
pipes: 
Schedule 40 
and meet 
ASTM-D-
1785. 
Fittings: 
ASTM-D-
2927. 
Perforations: 
3/8 inch in 
diameter 

Underdrain 
gravel must 
meet 
AASHTO-
M-43, size 
should be 
0.375 – 0.75 
inches 

   

Observation 
well placed 
near 
longitudinal 
center, 6 
inch 
diameter 
perforated 
PVC 
Schedule 40 
pipe with 
cap 6 inches 
above 
ground level 

Sand shall 
be: 
1 foot deep, 
AASHTO-
M-6 or 
ASTM-C-
33, and 0.02 
– 0.04 
inches in 
size 
6 inch drop 
inlet  
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	The National LID Atlas (University of Connecticut, nd) is another website that provides a database of LID implementation throughout the U.S.  Florida has five LIDs listed; that do not appear to repeat projects listed in the International Stormwater B...
	The University of South Florida, Tampa campus, has ongoing LID research and outreach.  The Patel Center for Global Sustainability installed a green roof and large cistern used to non-potable water uses such as toilet flushing.  The Patel Center for G...
	The Department of Civil and Environmental Engineering is active in promoting LIDs for nutrient removal and providing public outreach.  Ryan Locicero, a recent doctoral graduate, has installed eight bioretention systems in East Tampa (Locicero, 2015)....
	With a grant provided by the Tampa Bay Estuary Program, the Department of Civil and Environmental Engineering has installed two side-by-side bioretention cells in East Tampa.  The purpose of this research is to conduct field level investigations into...
	The American Society of Landscape Architects website provides several Florida projects that have incorporated LID into the site design.  All projects listed contain special features and vary from site to site; however, the implementation of LID is a ...
	Table 2.4 Low Impact Development Practices Showcased by the American Society of Landscape Architects (ASLA, 2015)
	There are a number of “green” communities within Southwest Florida.  Though direct implementation of LIDs is not always evident, the concept and design phase utilized the initial evaluation of site characteristics, retention of natural features, and ...
	River Forest, located in Manatee County, and Encore!, located in downtown Tampa, are two master planned communities that are executing LID practices, though neither is green certified.  River forest is a neighborhood where the homes are intertwined w...
	General themes of barriers to LID implementation are common across the U.S. including funding issues, lack of political leadership/support, resistance to change, conflicting regulations, the need of technical training, overcoming the concept of being...
	As recently as 2011, the Water Environment Federation (WEF) met with the EPA to discuss barriers to LID/GI implementation and followed up with a memo to the EPA.  The Water Environment Federation provided the EPA their perspective on overcoming imple...
	Table 2.5 Water Environment Federation Barriers to LID/GI Implementation and Solutions (WEF, 2011).
	In 2009, the University of Florida Program for Resource Efficient Communities (PREC), in conjunction with the St. Johns River Water Management District (SJRWMD), conducted four regional LID workshops for practitioners.  At each of the workshops, atte...
	Table 2.6 Comparison of Florida’s Barriers to LID Implementation with Other U.S. Regions (adapted from FWEA & AWRA FL, 2011; Doberstein, Kirschbaum, & Lancaster, 2010; Wulkan, 2008; Burian, et al., 2008; Earles, et al., 2009)
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	4.1.2 Infiltration Trench
	Figure 4.2 Infiltration Trench Plan and Section View (MDE, 2009)
	4.1.3 Infiltration-based LID Design Considerations
	4.2.1 Rain Gardens
	4.2.2 Dry Well
	4.2.3 Swales
	4.3.1 Submerged Gravel Wetlands
	CHAPTER 5:  PROSPECT OF LID IMPLEMENTATION IN FLORIDA
	5.1 Local LID Pursuits
	Several local governments in Southwest Florida have in place, or are planning to execute mechanisms toward increasing LID implementation within their communities.  Additionally, LID has been promoted as a sustainable stormwater practice in the preserv...
	In 2008, the Florida Department of Environmental Protection (FDEP) and the Florida Department of Community Affairs (FDCA) published Protecting Florida’s Springs: An Implementation Guidebook to address water quality and water quantity issues facing sp...
	Sarasota County’s LID Manual (2011) was developed in an effort to provide much needed design tools for LIDs in Southwest Florida.  The manual is for guidance purposes only and not a regulatory requirement (County, 2015).  Upcoming Sarasota County Com...
	In Chapter 2 of the Sarasota County LID Manual, site assessment and preservation of natural features are discussed as an important LID component.  As such, it is stated an LID site should consider preserving existing site assets, control runoff at th...
	Some aspects of this LID Manual might inadvertently discourage the implementation of LIDs in Sarasota County.  The manual addresses common issues that arise to those unfamiliar with LIDs such as appropriate siting, pollutant removal ability, draw dow...
	Chapter 2 of the Sarasota LID Manual provides a comparison of LID options in meeting site and watershed goals for each practice.  The tabular feedback provides information on whether the practice meets general site considerations, environmental site ...
	The manual states neither bioretention system will likely satisfy the storage capacity requirements for water quantity control in Sarasota County and SWFWMD.  Chapter 3 of the Sarasota County LID Manual provides discussion on design considerations, m...
	The bioretention systems appear to be treated as a landscape island rather than a stormwater facility.  Landscaping is an important aesthetic component in bioretention.  Proper plant selection can eliminate the need to excessive maintenance and ferti...
	In Section 3.1.2.3, Planting Soil Filter Bed and Nutrient-Adsorptive Layer, the planting soil filter bed and the nutrient-adsorption layer contain extensive and potentially costly media.  It is unclear if both layer requirements refer to a particular...
	Strict testing requirements after bioretention installation appear to create inadvertent barriers to LID installation.  The manual places a proper incentive for a pre-treatment filter strip by requiring testing every 3 years as opposed to every 18 mo...
	Pervious pavement, green roofs with a cistern, and stormwater harvesting from a wet pond receive overall credit for meeting runoff flow attenuation.  Rainwater harvesting is considered an auxiliary benefit and does not count toward runoff reduction; ...
	The City of Winter Haven has embraced infiltration-based LIDs as part of their Sustainable Water Resource Management Plan.  In their document, Sustainable Water Resource Management (2010), they state the overarching goal is to restore the pre-develop...
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	The design criteria information provided is similar to the Sarasota County LID Manual, though more information is provided for the engineer’s use on calculating BMP retention recovery and acceptable testing procedures for soils and depth to seasonal...
	Tetra Tech (2014) was contracted by Hillsborough County to identify GI/LID inconsistencies and barriers in local codes; additionally, Tetra Tech was charged with providing guidance on removing any barriers identified.  Tetra Tech’s Green Infrastructu...
	5.2 Low Impact Development Implementation Perspective Research
	As discussed in Chapter 2 of this thesis, LID implementation faces numerous barriers toward greater placement throughout watersheds.  These barriers occur both nationally and locally.  Most notably, there are consistent, recurring obstacles toward fu...
	5.2.1 Concerns of LID Implementation Locally
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	5.2.1.1 Methodology
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